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Chapter 1

Introduction

HULKs is a RoboCup SPL team from the Hamburg University of Technology. The team
was formed in April 2013 and consists of students and alumni.

HULKs team members originate from various fields of study. Therefore our research
interests are spread across several disciplines, reaching from the design of our own frame-
work to the development of dynamic motion control. Over the past seasons we improved
our performance continuously and subsequently reached the RoboCup 2018 semi-finals.

Our ambition for 2018 was the improvement of robot behavior in one-on-one situ-
ations. This was accomplished by rewriting the behavior modules and tuning our mo-
tion planning towards more aggressive dribbling as well as introducing a foot collision
detector and refining the sonar filter. Adopting the walking engine of rUNSWift–in the
version ported by B-Human—enabled us to increase our walking speed significantly. We
created a new python-based tool called MATE for live data visualization, configuration
and calibration.

This report serves as partial fulfillment of the pre-qualification requirements for
RoboCup 2019. For this purpose, it is accompanied by a version of the code that has
been used at RoboCup 2018.

The remainder of this document is organized as follows. Chapter 2 outlines how
to run the code release on a NAO robot and in simulation. Chapter 3 explains the
underlying framework of our code base. Image processing algorithms are presented
in chapter 4. Chapter 5 explains state estimation and the behavior. Chapter 6 oulines
different motion modules. Supplementary debug and visualization tools are presented
in chapter 7.
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Chapter 2

Running the Code Release

This section contains all information required to run our code release on a NAO robot,
inside SimRobot, and in replay mode on a Linux machine.

2.1 Prerequisites
To build the robot software, a recent Linux operating system is required. While it
is possible (however not officially supported) to run our code within SimRobot on
Microsoft Windows, building the toolchain, setting up robots and building for the NAO
robot is only possible on Linux. This section lists all packages required for specific tasks.

The following packages are required to build the code for replay (see section 2.4):

C++14 compiler (GCC ≥ 5.0.0, Clang ≥ 3.4), git, CMake, bzip2, libpng, libjpeg-
turbo, zlib, fftw, 3 ≥ 3.3, portaudio, ccache, qt5-base, qt5-svg, glew, libxml2, ode

To build the cross-toolchain required to cross compile for the NAO robot the following
packages are needed:

build-essentials (gcc, make, ...), git, automake, autoconf, gperf, bison, flex, texinfo,
libtool, libtool-bin, gawk, libcursesX-dev, unzip, CMake, libexpat-dev, python2.7-
dev, nasm, help2man, ninja

To communicate (uploading code, configuring) with robots, the following packages are
required:

rsync, ssh, curl

It should be mentioned that our code is optimized to run on a NAO v5 since this version
has a three axis gyroscope. However, it is possible to run the code on older versions of
the robot with only small changes required.
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2.2 Downloading the Repository
Our code release is hosted in a public repository on GitHub. To clone and checkout the
correct version, the following commands can be executed:

Listing 2.2.1

git clone https://github.com/HULKs/HULKsCodeRelease
cd HULKsCodeRelease
git checkout 2018

2.2.1 Configure the repository

It may be noted that our team number as well as serial numbers have been replaced
with placeholders in all scripts and configuration files coming with the code release. In
order to deploy the code on a NAO, the following files need to be modified by replacing
these placeholders:

Listing 2.2.2

scripts/files/net
scripts/lib/numberToIP.sh
scripts/gammaray (line 120, insert teamname here)
home/configuration/location/default/id_map.json (explanation below)

The id_map.json need to contain the serial numbers of all robot parts. This way a
robot is able to load the correct configuration files whenever he plays with a replaced
body. The file should look like this (while #### needs to be replaced by the last 4 digits
of the serial number of the robot part.).
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Listing 2.2.3

{
"idmap.nao": [

{
"bodyid": "####",
"headid": "####",
"name": "NAMEnao01"

},
{

"bodyid": "####",
"headid": "####",
"name": "NAMEnao02"

}]
}

2.3 Building the Toolchain
To build the hulks cross-toolchain the dependencies listed in section 2.1 must be
met. Afterwards one can run the following commands inside the repository root. A fast
internet access and a few hours of spare time are recommended.

Listing 2.3.1

cd tools/ctc-hulks
./0-clean && \
./1-setup && \
./2-build -toolchain && \
./3-build -libs && \
./4-install

After all scripts completed, there should be two new important files:

• ctc-linux64-hulks-7.3.0-1.tar.bz2

• sysroot-7.3.0-1.tar.bz2

2.4 Building the Robot Software
Currently, the code supports the following targets

• nao

• simrobot

• replay
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The first target compiles the code to be able to run on a NAO with the hulks cross-
toolchain. The second target compiles the code to be executed in SimRobot. The last
target enables to feed a prepared dataset into the code to be able to deterministically
test our code.

There are four different build types:

• Debug

• Develop

• Release

• RelWithDebInfo

The Debug type is for debugging only since optimization is turned off and the resulting
executable is very slow. It should not be used for normal testing or in competitions. The
Develop type is the normal compilation mode for developing situation. The Release
mode is used in actual games which mainly removes assertions. The RelWithDebInfo
type is equal to the Release type except it contains debug symbols. This mode is
especially useful for profiling (see section 7.3). The resulting executable is quite huge so
that we do not recommend using it in competitive games.

2.4.1 SimRobot

Our repository comes with its own version of SimRobot which one needs to compile first:

Listing 2.4.1

cd tools/SimRobot
./build_simrobot

After building SimRobot, the project needs to be configured with CMake. This can be
done by using the setup script as follows (from repository root):

Listing 2.4.2

./scripts/setup simrobot

Then the code base can be built for SimRobot by executing the command 2.4.3.
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Listing 2.4.3

./scripts/compile -t simrobot -b <BuildType >

To start SimRobot, simply run the executable inside the build folder. Our scenes are
stored in tools/SimRobot/Scenes.

Listing 2.4.4

cd tools/SimRobot/build
./SimRobot

2.4.2 Replay

To compile the code for replay one can execute the following commands:

Listing 2.4.5

./scripts/setup replay

./scripts/compile -t replay -b <BuildType >

Details on how to record and use replay files can be found in section 3.6.

2.4.3 NAO

The scripts need to know the locations of HULKs- and SoftBank-toolchains in order to
compile the code. Therefore exctract the ctc-linux64-hulks-7.3.0-1.tar.bz2 and
ctc-linux64-atom-2.1.4.13.zip:

Listing 2.4.6

cd ~/naotoolchain
tar xf ctc-linux64-hulks-7.3.0-1.tar.bz2
unzip ctc-linux64-atom-2.1.4.13.zip

After that, the toolchain can be initialized inside the code repository:

Listing 2.4.7

./scripts/toolchain init ~/naotoolchain

Finally, the code can be configured and build:
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Listing 2.4.8

./scripts/setup nao

./scripts/compile -t nao -b <BuildType >

2.5 Setting up a Robot
In order to setup a NAO, place a symlink inside the toolchain directly pointing at the
sysroot-7.3.0-1.tar.bz2 at first. Subsequently, the gammaray-script can be executed
to prepare the NAO for running our code. NAOIP needs to be replaced by the current
IP address of the robot, while the NAONUMBER may be an arbitrary number in the range
from 1 to 240. This number will be used to identify a robot on the network afterwards.

Listing 2.5.1

ln -s sysroot-7.3.0-1.tar.bz2 toolchain/sysroot.tar.bz2)
./scripts/gammaray -w -a <NAOIP > <NAONUMBER >

Once the script terminated successfully, the NAO should restart itself and be ready to
run the code. The robot’s hostname changes to nao<NAONUMBER>, while the IP Address
will change to 10.1.TEAMNUMBER.NAONUMBER + 10 during this process.

2.6 Uploading the Robot Software
The last step is to upload the code to the NAO and run it. This can be done by running
the upload-script:

Listing 2.6.1

./scripts/upload -dr <NAONUMBER >

The script will upload the compiled code and configuration files to nao<NAONUMBER> and
restart the hulks-service.

As executing these scripts is rather painful for multiple robots, we introduced scripts
like pre- and postgame. A detailed description on how to use these scripts can be found
in section 7.1.

11



2.7 Debug Tools
For the purpose of debugging a tool named MATE (Monitor And Test Environment, see
section 7.2 for technical details) exists. It can be found in: tools/mate. Before MATE
can be started, ensure all python requirements mentioned in pythonRequirements.txt
are installed.

Listing 2.7.1

pip install -r pythonRequirements.txt

To start MATE run:

Listing 2.7.2

cd tools/mate
python run.py

After starting MATE, connect to a NAO or SimRobot session. By clicking the New
button a new View can be opened. To see live images from the robot, add an image
view with the desired image key. There is also a feature called layouts to save and load
arrangements of views. These can be saved and loaded in the top control bar.

12



Chapter 3

Framework

The overall structure of the codebase can be seen in fig. 3.1. To be able to use the
framework (also known as tuhhSDK) for different robots, offline processing or simula-
tion there exists the robotInterface. It has methods to get the cameraInterface,
audioInterface and to control the robot. The tuhhSDK also provides Debug (see sec-
tion 3.4) and Configuration (see section 3.5) capabilities.

3.1 Module Architecture
The largest part of the algorithms for robot control is organized as independent
units called modules. Every module has access to the Debug, Configuration and
robotInterface instances via functions from its base class.

The connection of these modules can be modeled as a bipartite data flow graph made
of modules and the data types they exchange. DataTypes are stored in a database
for each module manager1 as can be seen in fig. 3.2. The relation of modules and data
types can be either that a module produces a data type or that it depends on it. This
is realized by two template classes Dependency and Production of which a module has
member variables for the data types it wants to access.

Each module must have a cycle method that executes the code that has to be
run for every frame. The order of the cycles is determined at runtime by topological
sorting to guarantee that the dependencies of all modules have been produced before
their execution. Before a data type actually is produced, it will be reset to a defined
state.

In general, the semantics of the module architecture are similar to the one presented
in [14], but the implementation is completely macro-free and instead based on templates.
This has the advantage that no design specific language is introduced and every person
capable of reading C++ can easily read the code at the cost of a bit more verbose
declarations of dependencies and productions.

Modules can be enabled or disabled before the startup of tuhhNao. To do this every
1Brain and motion implement the module manager interface.
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Figure 3.1: Overview over the general module architecture of our framework.
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Vision 
Thread

Modules

Database

Figure 3.2: An example of a module execution order and the associated DataTypes
stored in the Database. Productions are marked with orange arrows and dependencies
with green ones.

module has a static member variable that denotes its name. With this information in
place a json file can be used to change whether a module should run or not. The file
structure is explained in section 3.1.1.

3.1.1 Module Setups

It is possible to create multiple module setups. Each setup resides in
home/configuration/location/default/. Every module setup has to start
with moduleSetup_. The currently active setup can be configured inside the
home/configuration/default/tuhh_autoload.json entry: moduleSetup.

Every module has to be listed inside the moduleSetup_default.json if it should be
enabled by default or not. This can be overridden inside the specialized module setup
file. We already created a few module setups. The fullVisionFake for example disables
all vision modules and receives the position, ball and team data directly from the fake
data interface. This is especially useful if one wants to simulate the behavior of a whole
team of robots in real-time.

3.2 Threads
Autonomous interaction with the environment requires to evaluate a variety of sensor
outputs as well as updating the actuator control inputs at an adequate rate. Since the
update rate of the camera images is lower than the one of the chestboard, our frame-
work features two different threads, each of which is synchronized with the associated
hardware update rate, to run the related processing algorithms. Additionally, messaging
infrastructure is provided to safely share data between threads.
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The motion thread processes all data provided by the DCM2. These are accelerom-
eter, gyroscope and button interface sensor inputs as well as joint angle measure-
ments and sonar data. Any data provided the DCM is updated at 100Hz, which
thus is the frequency the motion thread is scheduled.

The brain thread processes the camera images. Since each camera provides image
data at an update rate of 30Hz the brain thread is running at double the frequency,
alternately processing images of the top and bottom camera. In addition to the
image processing algorithms, the brain thread also runs the modeling and behavior
modules, processing the incoming information and reevaluating the world model.

3.3 Messaging
Data types that are produced and needed in different threads have to be transferred
between them. This is done by having queues connecting the databases of their module
managers (see fig. 3.1). After each complete cycle of a module manager, it appends the
requested data types to the queue of the desired recipient. These data types are then
imported into the database of the other module manager when its next cycle starts.

The exchanged data types are determined by each module manager at program
startup. All needed data types that are not produced in the same module manager are
requested from all connected senders. It is made sure that only the module manager
that originally produces a data type will respond.

3.4 Debugging
Our framework features a variety of debugging and configuration features. It is possible
to export variables (including images) with an associated name so that they can be sent
to a PC or written to a log file. On the PC side there is a python application called
MATE that connects to the NAO via a TCP socket (or to a simrobot instance via an
unix socket). MATE is documented in the tools chapter section 7.2 of this document.

3.5 Configuration
We have a configuration system that loads parameters from JSON files which are named
identically to the belonging module. It will look for configuration files in multiple direc-
tories that are e. g. specific to a NAO head, NAO body or a location such as RoboCup
2017 SPL_A. Parameters that are set in more specific files will override parameter values
from generic files. It is also possible to change parameters at runtime via the afore-
mentioned MATE tool. Receiving new values can cause a callback to be run so that
pre-calculations based on these parameters can be redone.

2Device Communication Manager
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If there are specific JSON files to load, their location name can be specified inside
home/configuration/location/default/sdk.json in the parameter location. This name is
used to load configuration files a second time from a subfolder with this name inside
the location folder. Each location folder can add head and body folders. Each of these
folders can consist of a default subfolder and subfolders with a robot name as specified
in section 2.2.1. All values specified inside the location based configuration files will
overwrite the ones loaded from the default location. Also the default location can contain
default parameters for each robot e. g. the walking parameters.

3.6 Replay Recorder
We provide a module for recording live data called the replay recorder. In the past, algo-
rithm input data was processed directly on the robot and the results were logged to the
robot’s storage. There were multiple drawbacks to this method. First, all the collected
data may become deprecated as soon as the algorithm generating that data changes.
Furthermore, if we take an image-based candidate generator as an example, it becomes
impossible to infer something like the real detection rate if only the successfully gener-
ated candidate output gets stored, because that data is then missing the information
about all the missed objects.

Therefore a new framework for collecting data was implemented. We developed the
replay recorder module, which is capable of processing and storing all image and sensor
data as well as metadata like which buttons were pressed. Within a fixed rate, the
module checks whether a frame can be recorded and acts accordingly.

The collected frames can be reprocessed again by the HULKs framework by using
the replay mode. This is done by a virtual robot interface, which reads the stored frames
as image and sensor data and allows revalidation of algorithms on previously recorded
data.

3.7 SimRobot
SimRobot3 is a simulator developed at the University of Bremen and the German Re-
search Center for Artificial Intelligence. We developed our own controller that integrates
our usual code into the simulator. It is possible to simulate multiple robots at once to
be able to evaluate team behaviors.

We introduced a few sources of noise to the visual side of the simulation to bring it
closer to reality. The idea behind this is to obtain better estimates for the robustness of
vision algorithms tested inside SimRobot.

3.7.1 Motion Blur

Rendering realistic camera images in simrobot is hard. However, adding motion blur
helps in adding a relatively realistic sense of motion to every frame. We attain this effect

3http://www.informatik.uni-bremen.de/simrobot/index_e.htm
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by mixing the previous frame into the current one, using the arithmetic mean on the
pixelvalues. In doing so, lines, balls and other objects are harder to detect when the
robot or the object is in motion, as their outlines are blurred and the apparent size can
vary, similar to the effects observed on a real robot. When not testing anything related
to vision, this effect can be turned off.

In order to reduce the considerable performance impact, instead of iterating over
every pixel and color channel, we use the fact that the computation of the average can
be implemented using bit-wise operators on larger datatypes (int64 instead of byte).
This reduces the loop cycles necessary to iterate over the whole image.

3.7.2 New Field Texture

To make the field less monotone, we replaced the shadow-texture with a higher resolution
image which resembles a grass-texture more closely. The shadow used to render the lines
still uses the old shadow definition.
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Chapter 4

Vision

Vision is the software component that contains image processing algorithms. It is split
into several modules where each of them has a special task. The overall procedure is as
follows: Raw camera images are acquired from the hardware interface and the camera
matrix matching this image is constructed. Image preprocessing consists of determining
the field color (see section 4.4) and segmentation (see section 4.5) of the image to reduce
the amount of data to be processed by subsequent object detection algorithms. Subse-
quently another module tries to identify the field border (see section 4.6), i. e. the area
where the carpet ends. The objects that are currently detected are the penalty spot,
the field lines, the center circle and the ball (see section 4.7, section 4.8, section 4.9 and
section 4.10, respectively).

4.1 Image Data
The image data is provided through the RobotInterface which holds both camera
objects as members. The Camera class is configured so that we receive 640× 320 pixel
images in the YUYV format. The RobotInterface then provides a method which returns
the camera (top or bottom) to use in the next vision cycle. Hereby the camera with the
oldest, not yet processed data gets returned.

The first module to run in the vision pipeline is called ImageReceiver. It simply
calls the RobotInterface to receive a new image and makes the data available to all other
vision modules by producing a DataType called ImageData.

As we request a YUYV image, all modules and its algorithms use native YCvCr422
pixel data without treating any Y-values as padding. However, conversion to YCbCr444
is currently needed for generating debug images. This is currently done on the robot
and not in our debug tools.

4.2 Camera Calibration
The two cameras of the NAO have to be calibrated for optimal performance. Camera
calibration consist of intrinsic (determining focal lengths and centres) and extrinsic (ad-
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justing camera pose matrix using the kinematic chain) stages.
While intrinsic calibration is needed less frequently, extrinsic stage has to be per-

formed quite often as the cameras tend to physically shift during game play, especially
after a fall. The following will explain the calibration procedure for the case of a single
camera. In our implementation, the procedure is repeated for both cameras.

While the general methodology remains the same, UI and underlying calibration logic
was rewritten for the new python based debug tool (MATE) during this season. Usage
of Numpy, OpenCV 3 greatly reduced implementation time compared to the calibration
tool made for OFA in the previous season by using built in non-linear solvers such
as Levenberg-Marquardt and intrinsic calibration functions based on [19] and others.
Another change is the architecture was altered to support multiple patterns of different
classes (Aruco, ChAruco, Chessboard) [4]. as a prerequisite for the joint calibration
research done at the moment. However, only the ChAruco pattern is supported out of
the box, other options are not tested.

4.2.1 Kinematic Chain

The kinematic transformations from the ground point (generally positioned between the
feet of the robot) to the camera of the robot is crucial for determining distances and
positions of detected features. Understanding of this kinematic chain is required in order
to perform extrinsic calibration.

The following matrix names use a notation that denotes the initial and destina-
tion coordinate systems caused by the respective transformation matrix. For exam-
ple, camera2Ground describes the transformation from the camera to the robot’s head;
camera2Head is the transformation from camera to head after applying the extrinsic
calibration in the form of a rotation matrix Rext(α, β, γ). The transformation described
by camera2HeadUncalib matrix is different between the two cameras. The matrices are
supplied by SoftBank Robotics [17]. The formation of kinematic matrices from a ground
point to the camera is as follows.

camera2Head(α, β, γ) = camera2HeadUncalib × Rext(α, β, γ) (4.1)
camera2Ground(α, β, γ, t) = torso2Ground(t)

× head2Torso(t)

× camera2Head(α, β, γ) (4.2)
ground2Camera(α, β, γ, t) = camera2Ground(α, β, γ, t)−1 (4.3)

The matrices containing parameter t indicate their value may change over time i. e. due
to moving of the NAO. This distinction is important at the step of capturing images and
kinematic matrices for a given frame. Since the cycle times of motion thread and brain
thread (which runs vision modules) are different, the extra precaution of capturing im-
ages and kinematic matrices while the robot is still was taken to ensure time synchronism
of images and kinematic matrices.
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4.2.2 Extrinsic Calibration

The extrinsic calibration procedure is as follows.

1. Images are captured from the debug tool, which are then used for marker detection
to obtain an array of 2D points called DetectedPoints.

2. Using marker ID values and a key-value set, the physical locations of the markers
are determined and projected into the image plane where these form an array of
2D points called ProjectedPoints.

3. ProjectedPoints and DetectedPoints are sorted to form corresponding pairs for
same array indices.

4. Solving for the optimal extrinsic parameters involves minimizing the residual
(eq. (4.4)) which can be represented as a non-linear least squares problem. An
implementation of the Levenberg-Marquardt algorithm is used to obtain a numer-
ical solution by adjusting α, β and γ. The existing calibration values are supplied
as the initial guess to converge faster and to reduce risk of stopping at a local min-
imum.

Residual = ProjectedPoints(α, β, γ)−DetectedPoints (4.4)

5. A callback function notifies the UI of the debug tool and the user is visually
shown the projections of the markers with different colors for pre- (green) and
post- (yellow) calibration (see fig. 4.1). The user is able to identify any potential
problems and retry calibration if necessary.

6. Given that the result is satisfactory, the values are updated in the configuration.

4.2.3 Intrinsic Calibration

With the inclusion of OpenCV framework, it was possible to use the well tested, mature
implementation of OpenCV to perform intrinsic calibration. Therefore major amount of
testing and verification for intrinsic calibration could be removed.

The final two steps of extrinsic calibration are also present for intrinsic calibration;
similarly, the differences are displayed and the user can decide to accept or reject the
calibration.

4.2.4 Validation, Qualification

Validation of this tool is the process of ensuring accuracy of computed calibration pa-
rameters. Qualification is the step of determining that this process and tooling is fit for
usage during competitions where accurate and timely calibration is crucial. The accu-
racy of the extrinsic calibration was verified as follows.
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(a) The calibration pattern as seen from the
top camera.

(b) The calibration pattern as seen from the
bottom camera.

Figure 4.1: The calibration pattern as seen via MATE in SimRobot. The yellow marks
and text points to the projected corners (and their IDs) of the pattern with the current
calibration values.

1. Visually verify that the projection of markers of the fixture coincide with the border
of the observed markers. This facility is provided in the calibration tool UI (cf.
fig. 4.1).

2. Check the penalty box projection used for manual extrinsic calibration. In event of
correct calibration, the projection must coincide over the penalty box of the field.
The user should verify the satisfaction of this condition.

The accuracy of the intrinsic calibration was verified solely by observation of the
marker projection shown in the calibration tool. The reason for this choice was that
any error in calculation or projection was directly observable for the case of intrinsic
calibration while it wasn’t possible for the extrinsic calibration (which required the need
for two-step verification).

Similar to the last season, unit testing was introduced to verify calculations of the
calibration library. Once the verification was completed, the qualification step was per-
formed that included evaluation of software reliability, computational time and user
experience. Feedback from team members were used to further improve these factors.

4.2.5 Obervations & Remarks

The following section presents the observations and findings of the verification and qual-
ification steps. The average time values account for finding optimal calibration values
for a data set consisting of approximately 300-400 correspondence pairs.

• The accuracy of extrinsic calibration was similar or better compared to manual
calibration. While time synchronization was much better compared to the original
iteration in JavaScript, there were inaccuracies of the calibration results at certain
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instances (esp. Bottom camera) forcing us to use the penalty area based manual
calibration.

• It was discovered during RoboCup 2018 that some of the cameras showed signifi-
cant amount of radial distortion. This surely contributed for the errors due to the
positioning of the calibration rig while it was also determined that another review
of the calculations has to be performed.

• Although torso calibration was included and tested in extrinsic calibration, the
results were not reliable, since the variety of body poses during capture was not
enough to detect the torso posture error.

• Accuracy of intrinsic calibration was equivalent to the traditional method of using
Matlab calibration toolbox [1] as OpenCV’s calibration algorithms are based on
that. The output also allowed to conclude if the particular camera has significant
radial distortion. [11]

• Automated extrinsic calibration of both cameras generally took approximately
90ms (25 captures, excluding time for movement). This is a massive speed up
compared to previous 2+ minutes. The contributing factor was usage of SciPy
solvers which internally call highly optimized solver implementations in C.

• Automated intrinsic calibration took approximately 9 seconds for both cameras.
This is 12 times speed increase compared to the previous year’s implementation.

Testing of the tool for MATE started with Iran Open 2018 and was also used during
German Open 2018 and RoboCup 2018 (to lesser extent due to reliability issues probably
contributed with lens distortion). Due to the availability of proper intrinsic camera
calibration, it was possible to fully calibrate the cameras although external calibration
was less than reliable forcing secondary fine tuning at the field with penalty box.

At the moment research is being performed on possibility of joint calibration of the
NAO as a Project Thesis. Based on the results of that, it’ll be possible to determine
optimal positioning of calibration patterns, etc. In addition, additional investigation has
to be performed to determine the reliability issues faced during RoboCup 2018.

4.3 Robot Projection
It often happens that body parts, such as shoulders or knees, appear in the image. To
avoid falsy percepts in these regions of the image, knowledge of the forward kinematics
is used to project the arms, legs and torso into the image. This information is used by
subsequent modules to ignore these areas.

The implementation makes use of a set of body contour points. These points are
then projected into the image to calculate the approximated contour of associated body
part. All regions within the convex hull of the projected body contour points are marked
as invalid by the image segmenter. Those invalid regions are ignored by subsequent
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vision modules, noticeably reducing the amount of false candidates in the ball and line
detection algorithms.

4.4 Field Color Detection
To determine the field color a derived version of k-means clustering of the pixel colors is
used. As there is only one cluster for the field color, the maximum size of this cluster is
parameterized. The initial cluster value can either be given as a parameter or calculated
dynamically. The dynamic calculation uses the peaks of the histograms over the Cb and
Cr channels of pixels sampled below the projected horizon.

The update step is repeated up to three times. In each step the image is sampled.
A sampled pixel is part of the cluster if the distance in the Cb-Cr plane is lower than
a threshold and the Y value is lower than a configured multiple of the cluster’s mean Y
value. The mean of the cluster is shifted towards the mean of the pixels that meet these
conditions. In order to avoid huge jumps of the cluster, e. g. when the robot is facing
a wall or another robot that is very close, the shift of the cluster mean is limited and
remains unchanged in these cases.

4.5 Image Segmentation
The image is segmented along vertical and horizontal scanlines. Vertical scanlines have
a fixed distance to each other in pixel coordinates, whereas horizontal scanlines approx-
imately have a fixed distance in the robot coordinate system. The distance is approxi-
mated by a static projection matrix of a standing robot. A one-dimensional edge detec-
tion algorithm determines along a scanline where a region starts or ends. Subsequently,
representative colors of all regions are determined by taking the median of certain pixels
from the region. If that color is classified as the field color the corresponding region is
labeled as field region.

4.6 Field Border Detection
The field border detection uses the upper points of the first regions on each vertical
scanline that are labeled as field region. Through these points, a line is fitted with the
RANSAC method. This chooses the line that is supported by most points. If enough
points are left after the first iteration, i. e. points that do not belong to the first line,
a second line is calculated with RANSAC. It is only added to the field border if it is
approximately orthogonal to the first one.

The module also creates a second version of the image regions that excludes all
regions that are above the field border or labeled as field. The remaining regions are the
ones that are most likely to contain relevant objects.
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4.7 Penalty Spot Detection
First the penalty spot detection is using the horizontal scanline segments only. There
are fewer horizontal scanline segments than vertical scanlines due to the fixed distance
in the robot coordinate system. Therefore they can be searched faster to get a rough
idea of a potential penalty spot. Field colored segments and segments above the field
border are excluded from the search. A segment must not be too small and too far away
from the robot. The detection distance is limited to 3m in order to reduce potential
false positive detections. Then the pixel size of a theoretical penalty spot at the segment
position is calculated. If the size does not match the expected size of the penalty spot
at that position the segment is discarded and the next horizontal segment is evaluated.
Otherwise, all vertical segments intersecting the horizontal segment will be considered.
They must not be longer than the horizontal segment in pixel coordinates. Penalty spot
hypotheses on the ball position are excluded from further observations. A theoretical
point of intersection is calculated which is defined as the point in which the two segments
would overlap if they intersected each other in the segment’s mid point. The theoretical
point of intersection represents the penalty spot center point. Twelve equidistant points
on an elliptical path are calculated around the center point. The main and minor axis
of the ellipse can be calculated by back projections of the real penalty spot dimensions.
Each of the points on the ellipse must be inside the image and have a darker luminance
value than the penalty spot center. In addition, either each point must have a higher
chrominance compared to the center or can at least be classified as field color. The
hypothesis with the smallest euclidean distance between the theoretical center and the
segments’ intersection represents the penalty spot. Further details about the penalty
spot detection and its performance can be found in [10].

4.7.1 Penalty Area Detection

By combining the detected penalty spot with a line from the penalty box we can define
a feature we call the penalty area. The penalty area has the advantage that it can be
used to improve on the orientation estimation for our robot localization. For penalty
area detection we can simply use the known dimension of the field. The penalty area
is detected by looking for a line which corresponds to the known distance between the
penalty point and the penalty box.

4.8 Line Detection
The line detection takes image regions that start with a rising edge and end with a falling
edge. The gradients of both edges must point to each other and should be parallel.
In situations where sunlight creates bright spots on the field, the real length of the
region can be checked to better distinguish them from field lines. For each valid region
its middle point is added to a set of line points.

RANSAC is used to find up to five lines in the point cloud. If a line has a larger gap,
it is separated. If a resulting line segment contains too few points it is discarded.
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4.8.1 Line Intersections

For localization purposes it is a good idea to create high-level features from detected
lines. A single line can basically appear in almost any part of the field. By combining
lines which intersect we can create features which are much rarer and therefore better
for improving the localization of our robots. For these purposes we differentiate between
three types of intersections as depicted in fig. 4.2.

(a) L-Intersection (b) T-Intersection (c) X-Intersection

Figure 4.2: Different types of line intersections.

We merge detected line segments into intersections by performing the following steps:

1. Find all pairs of line segments which are more or less orthogonal to each other.
For the following steps we use the exemplary pair (A,B).

2. For each of these pairs find their point of intersection pi (does not necessarily have
to lie on one of the segments).

3. Calculate vectors between the point of intersection pi and the endpoints pA1, pA2,
pB1, pB2 of the two lines. We will name these vectors vi,A1, vi,A2, vi,B1, vi,B2.

4. Calculate the dot products xA = vi,A1 · vi,A2 and xB = vi,B1 · vi,B2.

5. Using the dot products xA and xB we differentiate between the following cases:

• xA > 0 and xB > 0 ⇒ the pair is an L-intersection
• either xA or xB > 0 ⇒ the pair is a T-intersection
• xA < 0 and xB < 0 ⇒ the pair is an X-intersection

4.9 Center Circle Detection
Since we are detecting line segments within the center circle as shown in fig. 4.3a we
can use these to estimate its position. To realize this we take the middle point of a
detected line and orthogonally place two points with a distance of the center circle
radius to the left and the right of the line. After doing this for all lines we then try
to find clusters of the points we placed. Considering only clusters which contain more
than a minimum of points and do not spread too much around the center of the cluster,
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we then take the center of the cluster which holds the most points as our center circle
estimate. One cluster found this way is shown in fig. 4.3b. In order to be able to also
use the orientation of the center circle for our localization we look for a line that moves
through the previously found cluster.

(a) Line segments detected in the center circle.

(b) Added points and resulting cluster (circled in red).

Figure 4.3: Visualization of center circle detection.

4.10 Black and White Ball Detection
As of 2016, the Black and White Ball Detection consisted of a derived version of the red
ball detection, suffering from many false positives and low detection ranges. The need
for a more robust ball detection motivated us to explore new possible solutions to this
problem. As another purely algorithmic approach with the aim of color-independent ball
detection had already been implemented previously, but has also proven to be infeasible
[15], the desire arose to try out machine-learning-based solutions. Approaches based
on convolutional neural networks for object detection lead to promising results in our
previous work, such as the robot detection [8]. These methods save a lot of work, as
no manual feature extraction is necessary. Still, there has to be a region of interest
search due to the lack of computation time for inferencing a network. There are also

27



(a) Seed points corre-
sponding to the center of
the black patches on the
ball.

(b) Merged seeds and pro-
jection of the corresponding
ball radius.

(c) Reprojected ball from re-
sult of the ball filter (green cir-
cle within black rectangle).

Figure 4.4: Visualization of ball candidate seeds, merged seeds and reprojected ball [2,
pp. 17–18].

many hyperparameters for the structural setup of the networks. This method has been
developed in a project thesis [2] and was later published as a paper [3].

4.10.1 Candidate Generation

As the first step of the candidate generation, the algorithm determines points lying
on the ball. This is done by searching the segmented image for dark regions that are
surrounded by brighter pixels. These points are called seeds, being the center points of
segments corresponding to the black patches of a ball.

After the calculation of all seeds in an image, nearby seeds within the range of a
projected diameter of a ball get merged to candidates. The position and radius of a
candidate is estimated by the mean of the corresponding seeds.

Additionally, the increased accuracy of the ball state prediction allows to use the
reprojected the predicted ball position as an additional source of ball candidates. While
this strategy already showed some promising results–improving the tracking performance
of balls with higher velocity–it can only be successful if the prediction is accurate enough
to relocate the ball within the image. Since this is often not the case, future work could
focus on generating additional candidates by reprojecting sigma-point like samples from
the estimated state distribution. The process of candidate generation is illustrated in
fig. 4.4.

4.10.2 Training New Models

After collecting and labeling candidates, our training set consisted of 16880 positive and
23768 negative examples and the test set, collected at a testing event, of 5687 positive
and 12730 negative images.
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The structure of the convolutional network classifying the candidates was optimized
using a genetic algorithm. The search spaces consisted of parameters like the sample size,
number and size of the convolutional and hidden layers, etc. For the fitness function,
a combination of the classification performance and the inference complexity was used.
The classification performance was determined by the true positive and true negative
rates and the inference complexity by an asymptotic approximation [2, pp. 20–24].
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Chapter 5

Brain

The ”Brain” part of our code base is divided into two domains: Gain of knowledge and
coordinating team behavior. The former is concerned with localization (section 5.2),
team ball filtering (section 5.4) and whistle detection (section 5.10) among other things.
The latter includes–but is not limited to–role assignment (section 5.1.1), behavior of
individual roles (section 5.1.3 to section 5.1.8) and ball search behavior (section 5.5).

5.1 Team Behavior
In the past season, we have introduced a dynamic role assignment that assigns the playing
roles during the game based on the world model. To coordinate the team behavior, roles
are assigned during the game based on the world model. The world model includes the
ball position and the positions of other robots. Based on a robot’s role and the roles of its
teammates, an action is performed. In addition to the obvious roles (keeper, striker and
defender) the roles include a supporter, a bishop, and a replacement keeper. Roughly,
the roles have the following tasks:

1. Keeper: Guard the goal.

2. Striker: The robot playing the ball towards the opponent goal.

3. Defender: Defensively positioned robots within own half. There can be up to two
defenders.

4. Supporter: Stays close to the striker in case the striker loses the ball or falls down.

5. Bishop: Tries to be a favorable pass target by occupying an offensive position on
the opponents half.

6. Replacement Keeper: Guard the goal while the keeper is penalized or far away.

For each of these roles, a module exists that provides an appropriate action or po-
sition. This is necessary because the module that combines the behaviors to a single
output does not have good means to preserve state.
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Figure 5.1: An aggressive situation. The colors indicate the role that is performed. Red
is the striker, purple is the supporter, blue is the keeper, and green are the defenders.
One defender stays behind the penalty spot, the other is more aggressive.

5.1.1 Role Provider

The general procedure of the role assignment is that each robot provides roles for the
whole team. Each individual robot uses the role of the teammate with the lowest number
that is not penalized. This approach is similar to that of B-Human (cf. [14, chapter
6.2.1]).

The roles are assigned as follows. At first the robot with the smallest estimated time
to reach the ball is assigned to be the striker. Thus, there will always be a robot playing
the ball even if no other robot is on the field and it will always take the minimum time
to interact with the ball. Note that the player with player number one can become the
striker (cf. fig. 5.4). No striker is assigned during enemy free kicks. Second, the player
with player number one becomes the keeper unless it already is the striker, in which case
no keeper is assigned. If this is the case or if a keeper exists but it is far away from the
own goal a replacement keeper is selected based on the distance of the remaining robots
to the own goal. Note that it is possible for a keeper and a replacement keeper to exist
simultaneously (cf. fig. 5.5). After striker, keeper, and/or replacement keeper are consid-
ered there are zero to four robots left. The remaining robots are assigned–in order–to the

31



Figure 5.2: A defensive situation. Both defenders stay behind the penalty spot. Note
that the supporter position is capped so that it does not interfere with the defenders.

following roles: defender, supporter/bishop, defender, and supporter/bishop, whichever
has not been assigned, yet. The PlayingRoleProvider can be configured to enable/dis-
able the replacement keeper and the bishop.

5.1.2 Set Position Provider

The SetPositionProvider computes the position where a robot should be in the Set
state of a game, i. e. where it should go during the READY state. The set of positions
that the robots may take is preconfigured but the assignment is calculated dynamically
to minimize the overall distance that robots have to walk. These position should match
the position that each robot is assigned to when the game state changes to Playing and
roles are assigned.

5.1.3 Keeper

The keeper’s responsibility is to avoid recieving goals. To accomplish this the keeper
always blocks the line of sight between the ball and the center of the own goal. If the
ball is moving towards the own goal with a certain velocity a kneel down motion–termed
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Figure 5.3: A corner situation. Note that the supporter position is capped so that it
does not interfere with the defenders.

genuflect–can be performed. If the striker is playing the ball close to the own goal the
keeper moves away to clear the way for the striker. Figure 5.1, fig. 5.2 and fig. 5.3
show the keeper–shown in blue–in an aggressive, defensive and corner game situation,
respectively.

5.1.4 Striker

The main task of the striker is to score goals. All other roles assist the striker or defend
the own goal. The striker is the only robot that is supposed to play the ball. The
position of the ball on the field has implications on the way the striker plays the ball.

If the ball is near the opponent’s goal the striker either dribbles or kicks the ball
towards the goal center. However, if the ball is very close to the goal and the current
dribble direction would score a goal the striker will dribble from its current position.

If the ball is near the own goal the striker should clear the ball as fast as possible. The
direction to clear the ball is the sum of directions at several key points weighted by their
distance to the current position. Depending on whether obstacles block this direction
the striker either decides to kick or dribble. To determine whether the direction is
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Figure 5.4: Player number one has become striker. In return, player number two took
the role of replacement keeper. Defenders and supporter are assigned as usual.

blocked a sector around the desired direction is sampled in a lawn-sprinkler-like way.
This is illustrated in fig. 5.7. The sector is discretized as 41 discrete directions with
weights to model the kick deviation. The weights describe the deviation and follow
a Gaussian normal distribution. If the sum over all weighted directions that are not
obstructed exceeds a threshold the striker kicks, otherwise dribbling is assumed to be
the better action.

If the ball is not close to any goal the situation is not critical. The best action is to
dribble the ball towards the opponent’s half to reach a position from which the striker
can score.

5.1.5 Defender

The defenders assist the keeper in blocking as much of the own goal as possible. Their
positions on the field are determined by three different lines: passive, neutral and aggres-
sive. Depending on the ball position the defending positions differ in their x-coordinate,
where the x-axis points towards the opponent’s goal. If the ball is close to the own goal
the defenders stay right behind the penalty spot (cf. fig. 5.2). If the ball is far away one
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Figure 5.5: Keeper and replacement keeper exist simultaneously. The keeper is far away
from the own goal, hence the replacement keeper guards it until the real keeper returns.

defender is more aggressive to cover a larger area of the field in case the ball is lost (cf.
fig. 5.1). The y-coordinate is determined by the line between the own goal center and
the ball. Ideally, this line of sight is blocked by the keeper. To cover the remaining area
of the goal the defenders position to the left and right of that line. This alignment is
illustrated in fig. 5.2. If the ball is in a corner on our own side of the field the positions
are clipped because the line intersections can be outside the field (cf. fig. 5.3).

The defending behavior is unique in that there can be one or two defenders. If a
defender is alone it generally behaves less aggressive.

5.1.6 Supporter

The supporter is designed to assist the striker by taking over if the striker loses the ball
in a duel or if it falls down. To accomplish this the supporter always stays some distance
behind the striker. The exact position is subject to a trade-off between covering as much
as possible of the own goal by standing on the line of sight between ball and goal on
one hand and being able to look at the ball on the other hand. Figure 5.4 illustrats this
trade-off. The supporter–shown in purple–does not stand directly on the line of sight.
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Figure 5.6: A goal free kick for the opposing team. No striker is assigned. Instead, a
bishop–shown in yellow–emerges.

Instead, its position is slightly shifted so that it is able to see the ball. This matters
significantly because the team ball model works better if multiple robots see the ball (cf.
section 5.4).

The penalty box and the surrounding area can become densely crowded. Figure 5.2
shows a defensive situation where the ball is close to the own goal. In order to avoid
mutual obstruction of striker and its teammates the supporter keeps a minimum distance
to the goal.

5.1.7 Bishop

The bishop has two modes: an aggressive and a defensive one. In the aggressive mode
the bishop lurks around close to the opponent’s goal. It waits for the ball to arrive to
eventually become striker and score a goal. The defensive mode is similar to the behavior
of the supporter. Figure 5.6 shows a bishop in defensive mode during an opponent’s goal
free kick.
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Figure 5.7: The lawn-sprinkler-like sampling of the kick deviation sector. The blue circle
is the ball; the white cirle is the striker. The striker aims at the goal center. Green
dots indicate lawn sprinkler directions that do not intersect with obstacles; red dots are
obstructed by obstacles.

5.1.8 Replacement Keeper

The replacement keeper mimics the behavior of the keeper with one exception. The
SPL rules specify that a robot that does not have player number one recieves a penalty
for touching the ball with its hands [13]. To avoid accidentally touching the ball the
replacement keeper must not use the genuflect motion. This is realized by a permission
management that is similar to unix file permission. Actions are encoded by powers of
two. Keeper and replacement keeper have a variable that stores their permission level
as a sum of allowed actions. If the binary representation of the permission level does
not include the power of two of an action that action is prohibited.

Figure 5.1 and fig. 5.4 depict two similar game situations. The only difference is the
fact that in the latter one player one is the striker. Consequently, player two replaces
the missing keeper.

37



Figure 5.8: Ambiguity of measurements for feature based localization. True pose and
perceptions (green) and other state that could create the same perceptions (magenta).

5.2 Localization
As of 2018 our code base features a new localization module based on an Unscented
Kalman-Filter (UKF). Experience from previous seasons has shown that our former
approach–based on a particle filter at it’s core–was too computationally expensive. High
runtime variance as well as partially bad estimation performance motivated the devel-
opment of new method [12].

While a full discussion or this method in all details goes beyond the scope of this
paper, we will outline the high-level idea of this module and present the main results of
our evaluation.

5.2.1 Inputs

As common in the SPL, we feed sparse field features–like lines, penalty spots and the
center circle–as updates to our pose estimator. While this low-dimensional, feature-
based approach is very data efficient, it also brings the challenge of ambiguous mea-
surements (see fig. 5.8). All visual features input to the localization are provided by the
LandmarkFilter—a module that pre-filters and abstracts the raw percepts produced by
our vision pipeline. Additionally, an odometry estimate computed from the orientation
estimation (see section 6.10) and forward kinematics is used for prediction of the state
evolution.
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5.2.2 Algorithm

On the most abstract level our algorithm solves the estimation task by tracking multiple
hypotheses of possible robot locations. This multi-hypothesis approach allows us to
approximate the multi-modal state distribution by a set of Gaussians. The state of
each hypotheses is represented by its position and orientation (x, y, α) and can then be
estimated using a separate UKF mode. Additionally, each hypotheses holds information
about past measurement prediction errors.

Prediction At every cycle, we predict the state evolution of each hypotheses based
on the odometry estimate. The new state estimate is computed from the last belief
transformed by the estimated pose shift (see fig. 5.9). Since the predict is non-linear, we
use the unscented transform to compute the predicted state distributions.

Figure 5.9: Predicting the state evolution using the odometry estimate.

Correction Measurements are used to correct the state estimate whenever the camera
matrix is believed to be valid. We classify the validity of the camera matrix based on
the estimated angular velocity of the camera frame. For large angular velocities of the
camera frame, all measurements are rejected. Updates are either performed as linear
updates as in the vanilla Kalman-Filter or–in case of non-linear observation models–by
utilizing the Unscented transform.

With every correction step in addition to the pose we also update the weighted error
of predicted observations to yield a measure for the validity of every hypothesis.

Hypothesis Elimination and Selection Following the correction step, we perform
one round of hypothesis elimination. In this step we eliminate hypotheses if they are
significantly worse than the current best estimate. Here, the quality of each hypoth-
esis is rated by it’s weighted error of predicted observations. Additionally, we merge
hypotheses whose state means have converged to approximately the same state. Redun-
dant hypotheses are deleted after the merged hypotheses are obtained by updating the
neighboring hypotheses with the full state observation of the deleted ones.

After all invalid or redundant hypotheses have been deleted or merged, the hypothesis
with the lowest observation error is published as the current state belief.
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5.2.3 Performance

The evaluation of both localization approaches–particle filter and Unscented Kalman-
Filter filter–showed that our new approach clearly dominated in both estimation per-
formance and runtime. Due to the fact that runtime constraints only allow to simulate
a very limited amount of particles, this approach suffered from insufficient sampling
density of the relevant state space. As a result, the particle-filter-based localization oc-
casionally falsely eliminates relevant clusters and provides a less smooth state estimate
due to sampling noise. The UKF-localization provides a more robust and accurate state
estimate, while achieving a worst case runtime seven times faster than the particle-filter.
Details about the performace evaluation can be found in [12].

The improved estimation performance has enabled to stay well localization through-
out most of the games. This allowed us to perform more complex team maneuvers and
improved positional play.

5.3 Ball Filter
Key to an accurate estimation of the ball’s position and velocity is a good model of
the ball dynamics. While we modeled the ball dynamics as fully linear and conser-
vative system in prior seasons, the new model was enhanced by also modeling viscose
friction. Even this friction model only provides a very simplified picture of the highly
non-linear ball dynamics, it has proven to be accurate enough for most of tasks. The
resulting improvement of the prediction performance in many cases allows the robot to
re-localize the ball. Furthermore, it allows to obtain a straight forward estimate of the
ball destination.

5.4 Team Ball
The team ball is a combination of the local ball estimate and the communicated ball
estimates of the team-mates. It is designed in a way that behavior modules can safely
rely on the team ball and do not need to decide between the own estimate and the
team’s estimate for themselves. Each player maintains its own buffer of balls. The
estimates of the team-mates and the local estimate are added to a buffer. However,
a number of conditions must apply before adding a ball. More precisely, the ball filter
must be confident about the ball state and the time of last perception must not be too
long ago. Balls that have not been seen for a time longer than a certain threshold will
be removed from the buffer. Spacial clustering is applied to the ball data in the buffer
to obtain candidates for a final ball position. The largest cluster is generally favored,
but when there are several clusters of the same size, the cluster containing the local ball
estimate is selected. In case the largest clusters do not contain the local estimate, the
cluster with the most confident ball 1 is selected.

1The confidence of a ball is assumed anti proportional to its perception distance.
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Currently, there is no averaging performed to extract the ball state from the best
cluster, instead only one estimate is selected. This selection has proven to be quite robust
against false positive ball detections of single robots. In particular, the ball-playing
robot (i. e. the Striker) has a stable team ball, which is important for the general goal
that, once a robot sees the (true) ball, it consequently plays it towards the direction of
the opponent’s goal.

The team ball model also integrates prior knowledge in certain game states if no ball
is seen: In the Set state, the ball position is set to the center of the field (or the penalty
spot in a penalty shootout), if it was otherwise unknown. Other modules can access
the information whether the team ball originates from the robot itself, a teammate, is
invalid or is known by the game rules.

5.5 Ball Search
Whenever the ball is lost during a game there is the need of having a strategic team
behavior to search for the ball. Our framework contains two modules that take care
of this task. The first module is called BallSearchMapManager. It takes information
like robot positions, ball position and field of view to calculate the most probable ball
position represented by a heat map.

This map is required by the second module called BallSearchPositionProvider.
It calculates position suggestions for all active robots on the field. After it received these
suggestions from every other player it determines which suggestion to trust most and
calculates the desired walk target.

The following sections describe how these modules work. It should be noted that
these two modules implement a ball search behavior that aims to search for a ball as fast
as possible even if the ball detection is not that good. The behavior is not considered
ideal when it comes to short term search.

5.5.1 BallSearchMapManager

This module is responsible for keeping track of all seen balls of every player that is
neither penalized nor unsure about its self localization. Therefore it gets the following
information from all players:

• robot position information

• field of view

• ball position and age

• penalty information

Additionally, the module depends on the GameControllerState as it implicitly contains
information about the ball state.
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The map manager then produces the BallSearchMap from this input. This map is
a discrete probability distribution that is implemented as a matrix of probability cells
(ProbCell). Each cell stores its current probability (weight) to contain the ball and an
age which denotes how much time has passed since the cell was last seen by any robot.
The map gets updated with every single cycle on each robot. Each update works in the
following way:

• If any team member sees the ball at a given position, the corresponding ProbCell’s
weight will be increased.

• Every ProbCell’s weight will be decreased–albeit at a slower rate–if it is inside the
field of view of any team member2.

• Each cell that was not modified by the preceding operations will get an increased
age. The age of all other cells gets reset.

• Afterwards, the map gets convolved with the following convolution kernel:

1

c+ 8

1 1 1
1 c 1
1 1 1

 (5.1)

in which c is large. It is ensured that the newly calculated value for a cell may
never be lower than its previous value after the convolution is done. This prevents
downvoting a cell that was never inspected by any robot.

• If the game is in READY state, the map is being reset constantly so that the center
circles cells have the highest probability.

• Whenever the ball leaves the field, the throw-in positions are increased in proba-
bility.

• When there is an ongoing goal free kick the two possible ball positions are heavily
increased in probability.

• Lastly, the map is normalized to keep an overall probability sum of 1, since the
ball is assumed to be on the field at all times.

The convolution will cause a ProbCell with a high value to slowly spread its probability
to its neighbor cells. If the ball is seen continuously by any robot, the containing cell
will be increased with every cycle, which negates the convolution mostly since the map
is also normalized every cycle. Updating the map in this way ensures that it keeps track
of all balls seen by any team member on the field while a ball that is seen by two robots is
represented with a higher probability. The resulting map is shown in fig. 5.10 (visualized
using MATE (see section 7.2)).

2The field of view for the team members is calculated using their position and head yaw.
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Figure 5.10: This is a visualization of the ball search map. The probability (upper value
inside the cells) is represented by the brightness of the cells while the age (second value
inside the cells) is represented by the red border. Also the players with their field of
view and current target cell are visualized.
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5.5.2 BallSearchPositionProvider

The BallSearchPosition provider is responsible for calculating search positions for
every active robot on the field as well as agreeing on the most wise player3. This
module mostly depends on the BallSearch map and the player positions.
The output of this module consists of the following information:

• An array of suggested positions for all robots that are available for this task.

• An array that flags all previously mentioned position suggestions as valid4 or in-
valid.

• A flag that shows if this particular robot is ready to participate in the ball search.
A robot that is ready is called explorer.

• The most wise player number.

• The search position (the exact position to look at).

• The search pose (the pose to walk to for looking at the search position).

Gathering the listed information is done in the following steps:

Calculating the most wise player: In this step, the player with the best map is
selected as the most wise player. Best means the map that was updated for the longest
period of time without any interruption (like a penalty for that specific robot). As the
wireless network is not reliable on competitions at all times the robot may fall back to
it’s own knowledge when needed.

Generating and assigning search areas: The field is divided into as many areas as
there are explorers on the field. The areas are defined by an array of points. Using those
points as seeds for a Voronoi diagram with euclidean distance then defines the search
areas. These areas are then assigned to the robot that is closest to the cells center. Re-
assigning only happens whenever a robot is dropped or added to the explorers.

Assigning search positions: After all robots are assigned to one search area they
only need a position to explore. This is done by sending the robot to the best ProbCell
inside the search area. The best cell is the one with the lowest cost to explore (see
eq. (5.2)).

3A player that holds a map that was continuously updated for the longest period of time, the decisions
of this particular player are then accepted by every other player

4A suggestion is marked as invalid whenever the module decides to not let a player participate in
searching for the ball.
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costToExplore(cell) =
timeToReach(cell) + 2

value(cell)
(5.2)

value(cell) =cellprobability ∗ probabilityWeight

+min(maxAgeValueContribution, cellage)
(5.3)

Generating the own search pose: This last step sets the own search position to the
value that is proposed by the most wise player (may be himself). Afterwards a suitable
pose to look at the chosen position is calculated. The resulting pose can then be used
by the behavior whenever needed.

5.5.3 Remarks

The introduction of these two ball search modules allows us to almost always find the
ball again after it has been lost. It also dramatically reduces the chance to cause a
global game stuck, since the robots will always explore all areas of the field when the
ball is lost. However, there are some problems that are not addressed by the current
implementation:

• A robot’s field of view might be blocked by an obstacle (e. g. another robot).

• The map assumes that a ball can not leave the field.

• Defense is down whenever a defender is added to the explorers.

5.6 Head Motion Behavior
The Head Motion Behavior is controlled by the Active Vision module. The idea behind
this module is to decouple the head motion from the rest of the behavior. The Active
Vision module provides a set of different modes that can be activated in the behavior.
Based on the chosen mode the module will then independently decide how the head will
behave. The following modes are available:

LookAround The robot moves his head from left to right.

LookAroundBall The robot will move his head from left to right but will, if possible,
always keep the ball in the field of view.

BallTracker The robot will follow the ball as close as possible and keep it in the middle
of the field of view.

Localization The robot looks in the direction that maximizes the number of points of
interest in the field of view. The points of interest are preselected and significant
field marks like the center circle or T-sections.
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BallAndLocalization Works similar to the Localization mode but also takes the ball
into account, so that, if possible, it is also included in the field of view.

LookForward The robot looks forward.

5.7 Team Obstacle Filter
The TeamObstacleFilter performs the task of fusing obstacle detections from all team
member’s local obstacle models to obtain a combined obstacle model including all avail-
able knowledge. In our model, obstacles can have different types. On an abstract level
we distinguish:

Robots Robot obstacles are known positions of friendly and hostile robots. The team
affiliation and information about whether this robot is fallen are encoded in the
type.

Map Obstacles Map obstacle are obstacles with a fixed global position throughout the
game and are known from the map. Currently, goal posts are the only obstacles
we consider of this type.

Rule Obstacles Rule obstacles are areas that have to be avoided according to the rules.
As of 2018, free kick areas in the case of a hostile free kick are the only obstacles
of this type.

Ball The position of the current ball estimate as obtained by the TeamBallFilter.

Unknown Any other type of obstacle whose type could not be classified. This type of
obstacle is generated e.g. in the event of sonar detections.

These types are used to determine mergeability of neighboring obstacles. In order
to obtain a combined team model, obstacles from each player’s local model are added
consequently to the map. While adding obstacles, we check for mergeability with obstacle
already present in the map. Two obstacles are considered mergeable if the type is
consistent and their positions are located in a small neighborhood. In the event of
an obstacle merge, the more informative type is persisted. E.g., merging an obstacle of
type Unknown Robot with an obstacle of type Hostile Robot yields a merged obstacle of
type Hostile Robot. Currently, the position of the merged obstacle is simply computed
as the mean of the involved positions.

5.8 Motion Planning
Motion planning is responsible for determining the trajectory of future robot poses and
the required translations and rotations in order to execute more abstract requests pro-
vided by the behavior modules. In doing so it aims to create a desirable reference trajec-
tory that moves the robot toward a specified destination while avoiding obstacles. The
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MotionPlanner-module supports multiple modes for walking on the one hand, as well as
allowing to walk at a specific speed and into a specific direction on the other hand.

Our motion planning uses a straightforward vector-based approach. It is especially
important when moving around the ball, where the robot will carefully try to avoid ball
collisions while circumventing it. Furthermore it creates an aggressive dribbling behavior
which essentially tries to walk towards the ball in order to hit it as much and as fast as
possible while maintaining correct alignment.

A few changes were introduced in 2018 to improve motion planning. First, the robot
now checks while dribbling if it is still aligned correctly with the ball towards the desired
destination and repositions itself accordingly on the fly. Second, the way in which the
ball is handled as an obstacle while circumventing it was improved to enable faster
approaches. Additional minor tweaks in alignment and targeting calculations resulted
in substantially faster and more robust dribbling with less unnecessary stopping. Future
developments in this area aim to extend the motion planning additional modules for
path planning in order to achieve a more sophisticated trajectory planning.

In the following, specific components of the motion planning will be explained in
more detail.

5.8.1 Translation

Determining the robot translation works by first creating a target translation vector
that either points towards a pre-specified direction or to a desired destination position,
depending on the requested walking mode. It then checks all known obstacles for any
potential collision. All obstacles that lie within a threshold distance of the robot create
additional displacement vectors that point away from the obstacle. A weighted superpo-
sition of the target translation vector with all the obstacle displacement vectors is then
used to determine a final translation vector as an output of the module. This transla-
tion gets recalculated and reapplied every cycle, which results in the robot moving along
a trajectory.

5.8.2 Rotation

Depending on the requested walking mode, there are two ways in which the robot rota-
tion is handled. The first option is that the robot tries to walk along a trajectory while
maintaining a globally fixed orientation. The other option is that it will try to directly
face the destination position until it approaches this position, where it then rotates grad-
ually to the final orientation. The gradual adaptation to the final orientation begins
at a threshold distance and is done with a linear interpolation based on the remaining
distance to target.

5.8.3 Walking Modes

There are several walking modes which can be requested by behavior modules. They
differ in the way obstacles are handled, as well as allowing different formats for the
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motion request specification. The walking modes are implemented as follows.

PATH is the general mode used most of the time. The robot walks to a specified target
while facing it. Obstacle avoidance is enabled in this mode.

PATH_WITH_ORIENTATION does the same as PATH, but in this mode the
robot will directly adopt to a specified orientation.

DIRECT is the mode that ignores all obstacles and makes the robot walk directly to
the destination, again facing the destination until near.

DIRECT_WITH_ORIENTATION is the same as DIRECT, but as in
PATH_WITH_ORIENTATION, the robot’s orientation while walking must be
specified and will be adopted immediately.

WALK_BEHIND_BALL generally behaves like the PATH mode, but causes the
robot to obtain a waypoint position close to the ball that may be reached safely,
before approaching the secondary destination pose attached to the ball. The way-
point position is constructed as shown in fig. 5.11.

DRIBBLE is the most important walking mode for an attacking robot. It generally
behaves like the WALK_BEHIND_BALL mode, but it switches to the VELOC-
ITY mode once the ball waypoint was reached, after which all obstacles are ig-
nored and the robot directly walks at the ball as long as it is still facing the enemy
goal.

VELOCITY is the mode in which a requested velocity vector directly specifies the
desired translational and rotational velocity for the robot. Since the requested
vector is not modified, all obstacles will be ignored.

5.9 Penalty Shootout
A new penalty striker behavior was developed and the penalty goalkeeper which was
almost non-active was enhanced to react for incoming balls.

The penalty striker randomly selects a corner of the goal it will be shooting at. In
addition, the enhanced motion planner (see section 5.8.3) was used to approach the ball
slowly and safely, avoiding the risk of the robot running into the ball by accident. This
walking mode also ensures that the robot is positioned accurately to kick the ball to the
designated target.

At RoboCup 2016 the standard keeper behavior was used for penalty shootouts. In
advance of RoboCup 2017 new motion files were introduced that allow the robot to catch
a ball rolling towards the goal.

During a penalty shootout, the keeper jumps either right or left or sits down based
on the predicted ball destination. In bad lighting conditions the keeper has difficulties to
track the ball and thus can not predict the ball destination correctly. This leads to the
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Figure 5.11: The WALK_BEHIND_BALL and DRIBBLE walking modes create a way-
point near the ball first (shown in yellow) by pulling away the original walking destination
(shown in red) to the opposite direction of where the enemy goal is, and then rotating
it towards the robot’s current position. The robot’s final trajectory is indicated by the
black arrows.
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problem, that the keeper does not react at all. To avoid this, some parameter changes in
the ball filter are necessary. Since these motions to catch the ball are rather destructive
for the robot, they are reserved for the penalty shootout.

Since last year, a penalty shootout challenge was introduced in our league to improve
penalty shootout behavior.

5.10 Whistle Detection
Based on a bachelor thesis [5] a new whistle detection was implemented. The whistle
detection features a dynamic detection of the whistle band in the frequency spectrum.
A Hann window is used to reduce spectral leakage.

In a predefined frequency range–in which the whistle is expected to be–the complex
spectrum is divided into bands of fixed size. For each band the mean of the absolute
values is compared against a threshold to narrow down the band that potentially contains
a whistle. If the mean of the whistle band exceeds a threshold a whistle is said to
be found in spectrum. If a whistle is found in four consecutive spectra a whistle is
considered to be detected and the game state is changed to playing.

The whistle detection proved to work well in the noisy environment that is the
RoboCup, with the only flaw being the detection of whistles that are blown on other
fields. Notably, a whistle is detected in the intro of the song Engel by Rammstein.

5.11 Foot Collision Detection
If we fail to detect an upcoming collision with sonar sensors (cf. section 6.9) we use the
foot bumpers as a fallback. This is mostly used to detect NAO robots lying flat on the
ground. The raw foot bumper values are checks for alternating sequences of the left
and right foot bumper. If a left-right-left or right-left-right sequence occurs in a given
timeframe a collision is detected. An obstacle is created in front of the robot. The foot
collision detector module respects the HardwareDamageProvider (see section 6.4)—if at
least one foot bumper is broken the module is not executed.

5.12 Free Kick Situations
In 2018 free kicks have been introduced in the RoboCup SPL [13]. Some of our modules
(mainly the modules that provide actions for the playing roles) are actively reacting
to free kick situations to comply with rules and use free kicks to out advantage. The
modules and their reactions are listed below.

RoleProvider Removes the striker role assignment whenever the enemy performs a
free kick. This way no robot tries to play the ball.

ObstacleFilter Adds an obstacle around the ball whenever the enemy performs a free
kick so that no robot may enter the forbidden area.
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BallSearchMapManager Integrates implicit information about where a ball may be
whenever a goal free kick is called.

DefendingPositionProvider Moves the defenders away whenever the free kick area
is close to their defending positions.

ReplacementKeeperActionProvider Moves the replacement keeper away from it’s
position (if the ball too close) as he is not allowed to stay in the goal in this
situation.

SupportingPositionProvider Moves the supporter between the ball and the own goal
in case the enemy performs a free kick.

All of these modules also perform a validity check on the free kick situation. Whenever
a goal free kick is called for the enemy team but a ball is detected in the own half of the
field we ignore the game controller state as the referee clearly made a mistake. This also
applies vice versa: A free kick that is called for us with a ball that was detected in the
enemy half of the field is treat as a referee mistake thus we are not approaching the ball.

5.13 Rainbow Eyes
To be able to tell if a robot is currently executing our code or not we introduced the
rainbow eye mode. In this mode the LEDs in the eyes are all set to display different
colors, forming a circular rainbow. Every n motion cycles the colors are moved one LED
further resulting in a rotation.

This mode is always used in the INITIAL game state. This way the person responsible
for deployment (see section 7.1) may quickly determine whether a robot was successfully
deployed or shut down.
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Chapter 6

Motion

This chapter describes how motions are executed in our framework. With one exception
all motions are the result of a MotionRequest that is derived from an ActionCommand
from the brain. The MotionRequest is used in the MotionDispatcher to determine
which motion ought to be active. The JointCommandSender interpolates angles and
stiffnesses to execute the transitions and yields the angles and stiffnesses that are send
as commands to the joints via the Device Communication Manager (DCM).

Section 6.1 briefly explains the MotionDispatcher. In section 6.2 the
JointCommandSender is described. The following section 6.3 depicts the
JointCalibrationProvider. Section 6.4 outlines the HardwareDamageProvider. The
remainder of this chapter details different motions such as walking (section 6.6), kicks
(section 6.7), and fall management (section 6.11).

6.1 Motion Dispatcher
The MotionDispatcher keeps track of the last motion that was active and handles the
transition between motions. Each motion type has an activation value between 0 and 1.
To transition from one motion into another, the activation value of the currently active
motion is decreased from 1 to 0. Simultaneously, the activation value of the motion to
be activated is increased from 0 to 1.

The FallManager is handled differently. Its activation is not controlled by the brain.
Instead, it is triggered if the robot is detected to be falling. This is similar to reflexes in
vertebrates which bypass the brain. Details about the fall manager motion can be found
in section 6.11.

6.2 Joint Command Sender
The JointCommandSender uses the activations computed in the MotionDispatcher to
interpolate the outputs of all motion modules. The outputs consist of joint angles and
stiffnesses. For each joint the weighted sum of all motion module outputs is computed,
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where the weight is the respective motion activation. Joint calibration offsets are applied.
In addition, the stiffness for each joint that is configured to be damaged is set to zero
(see section 6.4).

6.3 Joint Calibration Provider
Joint offsets of each robot can be taken into account by the JointCalibrationProvider.
This module produces the JointCalibrationData containing a set of calibration
offsets for all joints. These offsets are subtracted from the measured joint an-
gles in the SensorDataProvider and added to the final angle calculation in the
JointCommandSender. The offset values are expected to be known.

6.4 Hardware Damage Provider
We can set an extensive hardware status list for each robot according to the state
of each specified hardware component. It lists all joints and sensors such as sonar,
foot bumpers and cameras and specifies whether they are functional or not. The
HardwareDamageProvider processes this information and makes it available to the rest
of the framework. Other modules can declare a dependency on the hardware status and
react accordingly. For example, we may reduce the stiffness of broken joints to 0, so that
they can then no longer be controlled by any other module (see section 6.2). Addition-
ally, the hardware status information can be used to reduce the voting weight of a robot
with broken microphones when trying to detect the start of a game.

6.5 Motion File Player
The simplest way to execute a motion is to play a motion file. These files consist of
one header and several key-frames. While the header specifies the involved joints as
well as the total duration of the motion, the key-frames consist of joint angles and
stiffnesses with a corresponding relative duration. Playing motion files can be done with
the MotionFilePlayer. It loads a motion file and interpolates between the specified
frames while it is being played. Some basic motion such as standing up and keeper
motions are realized with motion files.

6.6 Walking Engine
In 2017 we managed to improve our former walking engine to perform reasonable on
the artificial turf. However, experience at competitions has shown that dexterity and
maneuvering speed of this approach were insufficient to allow for competitive soccer play
in the coming seasons. In the season of 2018 we replaced our walking module with the
walking engine of UNSW [6] in the version ported by B-Human in 2017 [14]. We decided
to port the Walk2014Generator of UNSW to our framework as it provides a robust and
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fast gait, yet has comparably low code complexity and thus can be easily augmented
with additional features.

6.6.1 Modifications

Development of our own walking engine in previous seasons has brought forward several
features and ideas that we sought to integrate to UNSW gait generator. Additionally,
we applied new features to improve the robustness of the gait in tackling situations.
Hereafter two of the most effective modifications are presented.

In-Walk-Kicks In order to move the ball faster and prevent the opponent to position
at the ball moving the ball as quickly as possible as proven to be a good strategy. Based
on this idea our team has developed kicks that can be performed in parallel to the
normal gait already in 2017. In our former walking engine, these In-Walk-Kicks were
implemented as superposition of the kick trajectory throughout a single step. In-Walk-
Kicks were commanded by our behavior and were automatically performed if the ball
was considered sufficiently close. While this approach provided reasonable performance
with our old walking engine using small step sizes, this approach needed to be improved
to also work with a more agile and fast-pace gait.

As of 2018 In-Walk-Kicks are requested by the behavior but only commanded to the
walking engine through the MotionPlanner. This allows for better timing and special
placement of such motion sequences. In order to allow for more controlled interaction
with the ball In-Walk-Kicks now consist of two steps–a preparatory step and a kicking
step. In the event of a straight front-kick, the preparatory step is used to place one foot
next to the ball before striking with the other–a strategy that we observed to be success-
fully performed by other teams performing similar kicks in previous tournaments [7].

Tackling Tackling situations require a stable gait that keeps the robot in balance while
interacting with the ball. Thus, such situations pose one of the greatest challenges to a
humanoid gait generator in RoboCup SPL.

In the event of a tackling situation we adjust the gait, leaning the robots upper body
forward and at the same time pulling the arms back closely to the robots waist. By this
means we shift the center of mass to the center of the feet, making the robot less sensitive
to disturbing forces. At the same time taking the arms close to the body reduces the
robots projected footprint and therefore lowers the likelihood of the arms getting caught
on other obstacles.

6.7 Kick Motion
The kick is one of two motion types that are not generated from motion files, the other
being walking. Similar to motion files the kick is generated from interpolation of joint
angles. However, the joint angles are computed from desired position of kicking foot
and center of mass relative to the support foot at certain points in time during the
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kick using inverse kinematics. Parameterizing positions in cartesian coordinates instead
of playing motion files has the advantage of being able to easily tune the kick motions.
Among other things, the desired positions are parameterized to enable extensibility. In
the current implementation two kick types exist: a forward kick and a side kick. Both
use the same interpolation scheme and only differ in their parameters. Thus, it is very
easy to add new kick types or change existing ones.

At the start of the kick the torso is shifted so that the robot can stand solely on
its support foot. The kicking foot is lifted, swung, retracted, and extended to establish
ground contact again. During the kick, the arms are moved in a way to compensate the
moment about the z-axis (the vertical axis) generated by swinging the foot. Low-pass
filtered gyroscope measurements are used as feedback to improve balance. The gyroscope
roll and pitch–multiplied by gains–are added to the support foot ankle roll and pitch,
respectively.

6.8 Head Angle Limitation
In 2016 we had severe hardware issues with several NAOs. Some robots randomly lost
stiffness in all joints, only recovering after a few moments. Further investigation on
this issue have shown that such incidents were strongly correlated with dmesg events of
reconnecting USB-devices as depicted below.

Listing 6.8.1 dmesg output after two incidents of spontaneous stiffness
loss

[ 7470.750343] hub 3-0:1.0: port 2 disabled by hub (EMI?), re-enabling...
[ 7470.750357] usb 3-2: USB disconnect , address 8
[ 7470.956081] usb 3-2: new full speed USB device using uhci_hcd and

address 9
[ 7471.500349] hub 3-0:1.0: port 2 disabled by hub (EMI?), re-enabling...
[ 7471.500365] usb 3-2: USB disconnect , address 9
[ 7471.707073] usb 3-2: new full speed USB device using uhci_hcd and

address 10

The disconnecting USB device is the chest board, which is connected at the head mount
of the NAO. Such chestboard-disconnects occurred particularly often if the head was
moved far right or left while trying to apply a certain head pitch. Since these hardware
issues couldn’t be fixed by SoftBank Robotics, we addressed this problem by introducing
a yaw dependent head pitch limit

θmax = θomax +
1

2
(θimax − θomax)

[
1 + cos

π

ϕrϕp

]
. (6.1)

θomax: The head pitch limit for the outer head-yaw range. Default: 11.5◦.

θimax: The head pitch limit for the inner head-yaw range. Default: 20◦.
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ϕp: Yaw threshold, separating inner and outer head-yaw range. Default: 32.5◦.

ϕr: The requested head yaw.

6.9 Sonar Filter
The sonar sensors allow for an estimation of the distance to near field objects. Since our
code does not yet feature any vision module that allows for a reliable visual detection of
obstacles like other robots, we use the sonar data to detect obstacles in the close vicinity
of the torso. Since obstacle avoidance–key to complying with the pushing-rule—is solely
based on the sonar data, filtering these measurement is indispensable.

Our sonar filter is a low-pass filter, augmented with fundamental validity checks. The
NAO documentation states that a reasonable detection performance can be expected in
a range from 0.2m to 0.8m [16]. Below 0.2m the sensor saturates, thus not being able
to provide any reliable distance measurements. Therefore, we reject all measurements
exceeding the aforementioned limits. Low-pass filtering the data helps dealing with the
sensor noise. Additionally, measurements far off the current distance estimation are
penalized with a lower weight, to achieve rudimentary outlier rejection.

The sonar sensors behave differently from robot to robot. A high stability of the
low pass filter, as described above, ensures the possibility to use sonar sensor data as a
reliable source of obstacles in close range.

6.10 Orientation Estimation
Knowing the orientation of the torso with respect to the ground is essential for many
tasks in robotics. While the rotation around the roll- and pitch-axis is a key input to
estimate the body’s pose and stability, knowledge of the rotation around an inertial
yaw-axis is a helpful reference for localization tasks. In 2015 work started on a sensor
fusion module, utilizing measurements of the accelerometer and the gyroscope to provide
a robust estimation of the torso orientation. A first version of this module was used
at RoboCup 2016. While it performed reasonably well for most cases, estimating the
body pose in the state space of Euler angles caused severe divergence in the case of a
gimbal-lock. Therefore, a new approach based on [18] was implemented. This algorithm
utilizes quaternions for internal state representation, thus evading the aforementioned
singularity issues. The implementation was validated with a dataset provided by [9],
originally recorded during UAV experiments.

The current implementation allows precise and robust estimation performance.
Therefore it provides a reliable source of orientation for our self-localization and is one
of the major reasons, why symmetric mislocalization has not occurred during RoboCup
2017 and 2018.

56



Figure 6.1: A robot that has lost its right forearm during a RoboCup 2017 game. That
is of course no reason for a HULK to stop playing.

6.11 Fall Manager
The frequent observer of RoboCup SPL games will have noticed the unique crouch
motion our robots execute when they are about to fall towards the front. This motion
is performed by the fall manager. Similarly, a sit down motion is executed when a robot
is about to fall to a side or to the back.

The crouch motion was originally designed to reduce hardware damage. We have
found that it fails to accomplish this. Moreover, the fact that the crouch motion further
accelerates a falling robot towards the ground leads to a more intense collision. The
head might be protected from damage, but the hands, arms, and shoulders take serious
damage. In fact, the crouch motion might have been responsible for the detachment
of two arms during RoboCup 2017 (cf. fig. 6.1). Consequently, we have abolished the
crouch motion to replace it with a different–and less arm-detaching—motion.

The new fall manager reclines the head and slightly bends the legs backwards when
falling to the front. Hip and chest are first to collide with the ground, absorbing most
of the collision. Neither head nor arms take damage.

6.12 Collision Prevention
With the incremental penalty times [13] accumulating fouls is a severe disadvantage. A
collision can be detected with sonar sensors (cf. section 6.9) or foot bumpers (cf. sec-
tion 5.11). To prevent pushing other robots the arms are taken on the back of the robot
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if a collision is detected. To take the arms back the upper arms are pulled close to the
body and the elbows are bent with the lower arms facing backwards. In particular, the
arm swing during walking is switched off, which makes the walking somewhat unstable.
To compensate this the center of mass is moved slightly forward.
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Chapter 7

Tools

This chapter explains the different tooling we utilize both during development and in
competition situations. During development, debug tools are necessary for visualizing
data. During development, debug tools are needed for data processing and measuring
CUP utilization. Beyond this, structured organizational procedures of real game situa-
tions have proven to be useful.

Section 7.1 describes how team members are assigned to specific tasks before, during
and after the game. Section 7.2 covers MATE, a tool for visualization, configuration,
and calibration written in python. In section 7.3 a tool to measure CPU utilization is
described. Finally, section 7.4 explains how to debug directly on the NAO.

7.1 Pre- and Post-Game Process
This section describes our processes and the scripts used to prepare and finish a compet-
itive game on RoboCup events. We figured out that having fixed processes prior games
helps getting constant results during competitions.

7.1.1 Roles

Having persistent roles for specific tasks reduces chaos significantly. These roles are
reassigned once a day at most. The roles are as follows.

Deployment Sets up the game branch and is the only person that is allowed to have a
connection to the active robots.

Game log Writes down important events during games to discuss them in the post-
game meeting.

Strategy Has the last word on parameter changes as well as changes to the game branch
(e.g. if we want to dribble only).
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Coach Assistant to the strategy guy. Exclusive interface to the head referee and game
controller controller 1 during the game.

Assistants 6 people, each responsible for one robot (jerseys, robot placement etc.).

7.1.2 Pre-Game Process

90 minutes before a game officially starts we start preparing ourselves. One team
member branches off of the repositories master branch (called the game branch) and
pushes it to a remote that is accessible to everyone. We then start calibrating cameras
as well as finding the right vision and walking parameters which are directly pushed to
the game branch.

40 minutes prior to the game, all parameters need to be pushed to the game branch.
The one that created the game branch then starts setting up the robots (scripts called
from repository root):

Listing 7.1.1

./scripts/changePlayerNumber 11:4 19:2 16:5 12:1 18:3

./scripts/pregame -n SPL_A 11 12 16 18 19

These two scripts do the following:

• Change the player numbers of all active players (robot 11 will have jersey number
4, robot 19 will have jersey number 2, ...)

• Compile for Release

• Upload the code to all active robots

• Clear all custom log files and replay data. This ensures that we do not run out of
disk space.

• Restart naoqi and the hulks service

• Connect all robots to the network (e. g. SPL_A)

30 Minutes before the game we have a procedure called golden goal benchmark. Dur-
ing this benchmark we start a test game at the field were the actual game will take place.
During this test game we go through INITIAL, READY and SET like in normal games.
After the whistle is blown in SET we measure the time our robots take to shoot a goal
against the empty field and terminate the game immediately after we scored. We also
terminate the game if it took us more than two minutes to score.

1our naming proposal for the game controller operator
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This very basic tests shows us if our code works as intended. Problems in walking
parameters, team behavior and communication as well as problems in the vision pipeline
can easily be spotted in this period of time. If we observe something strange we have
some time to fix the problem without the need of a timeout.

After the golden goal benchmark is completed, we start our post-game procedure
described in section 7.1.4.

10 Minutes before the game starts we re-upload our code to the robots (as described
above) to ensure that naoqi and hulks services are executed correctly.

5 Minutes prior to a game all robots should be connected to the correct network. The
person who deploys the code to the robots gives a signal when the robots are ready to
be carried to the field.

2 Minutes prior to the game all robots are placed on the field and get manually
penalized by pressing the chest button.

7.1.3 Half-Time Process

All robots are taken back to the team zone in the half-time. The post-game procedure
(see section 7.1.4) is executed to download all logs and replay files. At this point the
person responsible for strategy may change parameters.

After the post-game script finished we immediately start the pre-game procedure
again and bring the robots back to the field.

7.1.4 Post-Game Process

Immediately after a game is finished, we start our post-game procedure. This process
only consists of calling one script:

Listing 7.1.2

./scripts/postgame -l LOG_DIR 11 12 16 18 19

The post-game script does the following:

• Download all logs and replay files

• Stopping the hulks service

• Disconnect the robots from the wireless network

After the post-game script is finished our team normally has a short meeting were the
game log is being discussed and tasks are assigned.
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7.2 MATE
In 2018 we have developed a new tool for visialization, configuration and calibration.
The tool is written in python and is called MATE (Monitor And Test Environment).

7.2.1 Structure

The entire tool is split into a back end part (network communication and data manage-
ment) and a front end part (PyQt windows and widgets). For each MATE-session there
exists one NAO object holding the network back end and higher level communication
methods e. g. to request a specific image. All networking and communication related
sources are located in the net/ directory. The user interface includes all widgets, views
and windows and is located in the ui/ directory. The run.py script starts a QApplica-
tion and a QMainWindow. All following widgets and views are dynamically created and
shown in interaction with the MATE user interface.

7.2.2 Network Communication

MATE uses socket communication to send and retrieve data from a NAO or Simrobot
session. The underlying protocol is built using the asyncio library. A stream connec-
tion is established utilizing respectively TCP- or UNIX-Sockets and the corresponding
protocol defined in the NAO framework. Through this connection MATE subscribes
Debug-Keys and receives the appropriate data i. e. the associated value.

Any view or element can subscribe one or more keys. The subscriber is identified with
a custom string holding for example an uniquely generated ID. Additionally a callback
function is registered. This function is used to pass the incoming data to the subscriber
object.

Regarding the config protocol MATE implements a similar subscriber hierarchy, dis-
regarding that a config data request gets a single response.

7.2.3 Visualize Data in Views

All MATE-views are realized using QDockWidgets which enables dynamic arrangement
and positioning of all views. There are six individual views implemented: Text, Image,
Plot, Map, Config, CameraCalibration. A combination of various views is visualized in
fig. 7.1. The Text-view visualizes incoming data in JSON-formatted text. The Image-
view enables us to visualize live images that are rendered on the NAO (see fig. 7.2).

Numeric values can be plotted in the time domain using the Plot-view. It is possible
to visualize the values of multiple debug keys in fully customizable colors e. g. sketch
all joint angle values as seen in fig. 7.3. It is also possible to extract numeric values
from complex data types utilizing a python lambda function, which can be set in the
configuration of the Plot-view. An example of plotting the first element of an incoming
array is shown in 7.2.1.
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Figure 7.1: An example of combining a Map-view picturing the registered obstacles of a
NAO with a config-view and a text-view.

Figure 7.2: The image segmenter output in four MATE Image-views.
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Figure 7.3: A Plot-view showing all joint angles.

Listing 7.2.1

def parse(input):
output = input[0]
return output

7.2.4 Higher-Level Data Processing Using the Map View

The Map-view is a layered 2D top-down visualization. Implemented layers include both
static and dynamic elements such as ball-position, players, playing field, obstacles, ball-
search probability-map. For development and debugging of any given feature, a Map-
view with relevant layers has proven to be helpful. A Map-view for the ball search (cf.
section 5.5) is shown in fig. 7.4; the layer configuration is shown in fig. 7.5.

7.3 Profiling
We prepared our code to work with Intel VTune Amplifier. It is a x86/x68_64 profiler
that can be used to measure CPU utilization down to the instruction level with very low
performance impact, enabling profiling during normal test games.
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Figure 7.4: Using the Map-view to visualize the current ballsearch model.

Figure 7.5: The layer configuration of a ball search visualization.
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7.3.1 Prerequisites

VTune needs to be able to connect to the NAO without any password prompt. This
can be accomplished by enabling ssh authentication via ssh keys. Adding the robot as
a host to .ssh/config simplifies connecting via VTune:

Listing 7.3.1

Host ROBOT_IP
HostName ROBOT_IP
Port 22
User nao
IdentityFile /PATH/TO/IDENT_FILE

For better disk performance we use an usb drive to store temporary files during profiling.
Mounting a drive to /mnt/usb is recommended.

To be able to use VTune, CMake needs to find libittnotify on your system. There-
fore the nao compile target needs to be setup again. This should do the trick:

Listing 7.3.2

export VTUNE_HOME="~/intel/vtune_amplifier"
./scripts/setup nao

The output should contain a message like Found ITTNOTIFY. Uploading to the target
robot can be done like this:

Listing 7.3.3

./scripts/upload -d -b Release <NAOIP >

./scripts/connect <NAONUMBER >
nao# sudo /etc/init.d/hulk stop

7.3.2 VTune Configuration

After starting the amplex-gui of VTune it is possible to create a new project. The
configuration should look like 7.3.4:
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Listing 7.3.4

destination: nao@<NAOIP >
Application path: /home/nao/naoqi/bin/tuhhNao
VTune Amplifier installation directory: /home/nao/intel
Temporary directory: /mnt/usb/tmp

As Analysis Type we recommend to use the Basic Hotspot analysis. Choose a
sampling interval (e. g. 1ms) and make sure to check Analyze user tasks, events, and
counters.

7.3.3 Actual Profiling

After the Start button is pressed VTune will prepare the robot. This might take a while.
When the initialization finished, the robot can be used as normal. We recommend to
collect at least 180 s of profiling data to have good results.

7.3.4 Evaluation

When an analysis is finished, you can view the results inside VTune Amplifier. We
also published a python script that plots the runtime of all modules. It can be found
inside the tools folder (tools/IttNotify) and needs dev-python/matplotlib and dev-
python/pandas installed. A usage example can be found here:

Listing 7.3.5

plot_modules_from_ittnotify_data.py --supress -wait-modules \
~/intel/amplxe/projects/HULK/r000hs plot

It is possible to get all parameters and their description with --help. The resulting plot
will resemble the one shown in fig. 7.6.

It should be noted that while the plot is already good for getting an overview of the
modules’ run-times, VTune itself makes it possible to analyze the performance in even
greater detail.

7.4 Debugging on a Robot
Sometimes it is necessary to debug program crashes or other strange behaviors of the
robots. For debugging the tuhhNao process on the NAO, it is necessary to run it under
gdb. The NAOqi OS only has a very old version of it installed. Our sysroot contains a
newer usable version of gdb. Debugging tuhhNao with gdb can be achieved with 7.4.1
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Figure 7.6: A box plot depicting the runtime of all Motion Modules. Black circles
indicate outliers.

Listing 7.4.1

/home/nao/sysroot -7.3.0-1/usr/bin/gdb /home/nao/naoqi/bin/tuhhNao

Afterwards the process can be executed with run. At any time it is possible to
return to gdb’s command line using Ctrl-C (this stops the execution of the process). If
the process segfaults, gdb returns automatically to the command line. Afterwards it is
possible to type commands to probe the current state of the application. For example,
to get the function the currently selected thread is inside, type backtrace. If backtrace
does not list useful information it is required to build tuhhNao with Debug instead of
Release target.

If you need more information about debugging with gdb, we refer you to the many
existing tutorials on the topic.
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