
Designing Convolutional Neural Networks Using a Genetic Approach
for Ball Detection

Georg Christian Felbinger Patrick Göttsch Pascal Loth Lasse Peters Felix Wege
RobotING@TUHH e.V., Hamburg University of Technology

Introduction

In 2016, a black and white patched ball was introduced into the Stan-
dard Platform League (SPL). Requirements for a detection algorithm
comprise a robust detection and classification in dynamically changing
environments, as well as a cost-effective real-time computation on the
NAO.
Approaches based on convolutional neural networks (CNN) for object
detection led to promising results in RoboCup SPL [1]. However, hyper-
parameters for the structural setup of such networks need to be chosen
carefully. Genetic approaches can be used to determine an optimized
network topology. [2] described the evolution of fully connected network
topologies. The idea can easily be applied to other model components,
e.g. convolutional layers. A similar genetic approach was used by [3] to
automatically discover good architectures of CNNs.
This paper presents a genetic framework to design CNNs for real-time
applications on computationally weak hardware by simultaneously op-
timizing the classification performance and inference complexity. Our
approach considers a bounded capability to collect large amounts of
training data and allows the user to prioritize true negative rate and
true positive rate suitable for a specific task. The detection of a black
and white ball on the NAO robot is used to demonstrate the performance
of the framework.

Data

Due to the limited computation capabilities of the NAO, not the whole
image can be inferenced by a neural network. Therefore, a deterministic
region of interest is needed to provide candidate regions to be classified.

Figure 1: Seed is corre-
sponding to the center of the
black patches on the ball.

Figure 2: Merged seeds and
projection of the corresponding
ball radius.

Figure 3: Reprojected ball from
result of the ball filter (green circle
bounded black rectangle).

Data Setup
The data used for training and evaluation of the classifier were collected
during various events (RoboCup 2017, Iran Open 2017, German Open
2017, weekly test games).
It consists of 16880 positive examples (candidate images containing a
ball) and 23876 negative examples (candidate images not containing a
ball).
During training negative examples are subsampled randomly to ensure
that in every cross-validation set the same amount of positive and neg-
ative examples are present.

Genetic Design of CNNs - Search Space

The input is a YCbCr candidate image of arbitrary quadratic size. It
is resized to a fixed quadratic size using nearest neighbor interpolation.
Then, multiple convolutional layers are applied. The next step is a batch
normalization layer. Finally, multiple fully connected layers are applied.
The output is a vector representing the class scores.

YCbCr
Image Resize

Convolution Layer 1

2DCL ActPool
...

Batch
Normalization

Output
Vector

Convolution Layer 2

2DCL ActPool

Fully Connected Layers

Input
Layer

Output
Layer

Hidden
Layer

Figure 4: General structure of a CNN. Each convolutional layer consists of a two dimensional convolution
mask (2DCL) followed by a pooling layer (Pool) and an activation function (Act). The convolved and normalized
image is fed into multiple fully connected layers yielding the final output vector.

Each individual specifies the remaining hyperparameters within this
structure. These are the input size, number of convolutional and fully
connected layers as well as their internal configuration. Each convo-
lutional layer is parameterized with a mask size, pooling type and ac-
tivation function. Likewise, the parameters of a fully connected layer
consists of the size and activation function.

Table 1: Search space with value ranges derived from the general CNN structure.

Parameter Value Range
Input Sample Size [8, 16]
Convolutional Layers [0, 2]

No. of Masks [1, 5]
Mask Size [2, 3]× [2, 3]
Activation Tanh, ReLU
Pooling None, Avg, Max

Fully Connected Layers [0, 4]
Size [2, 20]
Activation Tanh, ReLU

Genetic Design of CNNs - Fitness Function

We optimize classification performance and inference complexity at the
same time. In the fitness function classification performance is repre-
sented by the true negative and true positive rate. Inference complexity
is approximated asymptotically.
Classification Performance
For each network a k-fold cross validation was performed which yielded
k values for true negative rate TNRnk and true positive rate TPRnk . In
order to approximate a lower bound of these performance metrics the
difference of mean and variance were used in the fitness function. The
TPRn and TNRn for a network n was computed by:

TPRn = Avg(TPRn1, ...,TPRnk)− Var(TPRn1, ...,TPRnk) (1)
TNRn = Avg(TNRn1, ...,TNRnk)− Var(TNRn1, ...,TNRnk) (2)

where Avg is the arithmetic mean and Var is the variance.
Inference Complexity
The complexity of a network was asymptotically approximated and lin-
early scaled. The complexity cc of a convolutional layer i is approximated
by equation (3).

cci =
Ix · Iy · Ic · mx · my · mc
Îx · Îy · Ic · m̂x · m̂y · m̂c

=
Ix · Iy · mx · my · mc
Îx · Îy · m̂x · m̂y · m̂c

(3)

Symbols Ix , Iy , Ic correspond to layer input size and depth, mx ,my ,mc
to amount and size of the convolution masks in this layer. While
Îx , Îy , m̂x , m̂y , m̂c represent maximum values as defined by the search
space.
The complexity cf of the fully connected part is approximated by equa-
tion (4).

cf =
∑k

i=1 si · si−1∑k
i=1 ŝi · ŝi−1

(4)

The number of hidden layers is denoted by k and the size of layer i by
si . The input vector size is s0.
Hence, the final complexity of a network topology with j convolutional
layers is

cn = 1 −
∑j

i=1 cci + cf
j + 1 . (5)

Resulting Fitness Function
Given the approximation of classification performance and inference
complexity the resulting fitness function is chosen as follows:

fn = 0.7 · TNR2
n + 0.25 · TPR2

n + 0.05 · cn. (6)

For networks with a good classification performance it is disproportion-
ally difficult to further increase the TNR and TPR. Thus, the TNR and
TPR are squared in the fitness function.

Evaluation on NAO

Generalization Test
The best network of the last generation that was trained with all of
the training data is subjected to a final generalization test. This final
network is evaluated with data collected in another environment which
can be considered to be a proper generalization test because no data
from these testing conditions was used during training. The classifier
predicted 4989 of 5687 positives and 12680 of 12730 negatives correctly
resulting in a TNR = 0.99 and a TPR = 0.87.
Runtime Analysis on the NAO Robot
The whole ball detection including the resulting network running on the
NAO was evaluated. For this test we fixed the number of generated
candidates per image to the average amount five to get stable measure-
ment results. Figure 5 shows the result of those measurements. With
an average runtime of about 8ms on the top and 4ms on the bottom
camera we reached our real-time criteria which is 30ms for a vision cycle.

4

6

8

10

12

14

16

m
s/

cy
cle

(a) Top Camera

4

6

8

10

12

14

16

m
s/

cy
cle

(b) Bottom Camera
Figure 5: Runtime of the ball detection including the resulting network on the NAO. The green line indicates
the mean of the runtime. The interquartile range is shown by the blue box. The upper black bar illustrates the
0.75-quantile, respectively the lower black bar the 0.25-quantile. The circles correspond to outliers.

Experiments and Evaluation

In every experiment 15 generations with 50 networks in each generation
were evaluated. The worst 10% in each generation were excluded from
reproduction. The mutation probability was set to 1

16 according to the
maximum number of degrees of freedom of the given search space.
The algorithm should be able to design a CNN as a solution to the
ball detection problem considering a limited amount of training data.
To show that this can be achieved three experiments were conducted,
sampling 25%, 50% and 100% of the available training data.

1.00

0.80

0.60

0.40

0.20

0.00

T
P
R

0.30 0.40 0.50 0.60

TNR

0.70 0.80 0.90 1.00

(a) Experiment with 25% of the data. The best networks in the last generation reached
a TNR of 0.91 to 0.95 with a TPR of about 50% to 75%. The resulting network has a
very small sample size of 8×8, one convolutional layer of four masks and only three hidden
layers in the fully connected part.

0.90

0.80

0.70

0.60

0.50

0.40

T
P
R

0.75 0.80 0.85 0.90 0.95

TNR
(b) Experiment with 50% of the data. The best networks in the last generation reached
a TNR of about 0.93 with a TPR above 0.85. Networks with one large convolutional layer
and mainly three hidden layers in the fully connected part dominated this experiment.

0.95

0.90

0.85

0.80

0.75

0.70

T
P
R

0.90 0.92 0.94 0.96 0.98 1.00

TNR
(c) Experiment with 100% of the data. The best networks in the last generation reached a
TNR of about 0.95 with a TPR above 0.90. While the sample size and convolutional layers
remained similar to those in the second experiment, the fully connected part converged to
four hidden layers instead of three.

Figure 6: Evolution of classification performance. Note that scaling differs between experiments as the
overall results got better. Results of the first generation are plotted with white filled circles. Results of the
following generations are plotted in increasingly darker shades of gray.

The network having the highest score in the last generation is consid-
ered to be the resulting network. Networks became more complex while
increasing the amount of data resulting in better classification perfor-
mance.

Conclusion

We presented a genetic framework that was successfully applied to the
problem of black and white ball detection using little computational
power. Our experiments showed that a genetic approach is able to
identify a small yet efficient network suitable for a specific classification
task. The presented optimization strategy obtains suitable hyperparam-
eters even with limited amount of training data.
In order to enhance convergence speed future work should focus on
evaluating different variants of genetic algorithms such as elitism [4].
Additionally, we would like to apply the approach to multiclass problems
using a modified fitness function.

References

[1] J. Menashe et al., “Fast and precise black and white ball detection for robocup soccer,” in Robot world cup, 2017.
[2] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127, 2002.
[3] Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional neural networks for image classification,” CoRR, vol. abs/1710.10741, 2017.
[4] S. Baluja and R. Caruana, “Removing the genetics from the standard genetic algorithm,” Carnegie Mellon University, Pittsburgh, PA, CMU-CS-95-141, May 1995.

www.hulks.de June 16, 2018 hulks@tuhh.de

https://www.hulks.de
mailto:my_address@wikibooks.org

