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Abstract. The increasing application of artificial neural networks (ANN)
in various domains of robotics with limited processing capabilities de-
mands highly optimized ANN architectures. Efficient architecture search
requires horizontal and vertical scaling of ANN evaluation. In this paper
the HULKs present their approach and application of a scalable genetic
algorithm based on distributed task execution which can be found at
https://github.com/HULKs/ditef. The framework is able to scale dy-
namically and operate on heterogeneous hardware. Usage of the dis-
tributed genetic algorithm to evolve ANNs for the context of RoboCup
soccer competitions is shown as a case study.

1 Introduction

Determining the ball position accurately using NAO robots is one of the most
important problems in RoboCup Standard Platform League (SPL) games. As
shown previously by Budden et al. [2], Teimouri et al. [16], and Felbinger et al.
[6], convolutional neural networks (CNN), a variant of artificial neural networks
(ANN), are well suited for the task of detecting SPL balls. Since training times
for this use case are rather short1, optimization algorithms can be used to find
optimal architecture and hyperparameters. In particular, Elsken et al. [4] and
Ren et al. [14] show that genetic algorithms can be used to optimize a CNN’s
architecture and hyperparameters. The execution time of genetic algorithms for
neural architecture search is dominated by the time it takes to train and evaluate
different neural networks. Since their evaluation is independent, the algorithm
can be sped up significantly by parallelization.

1.1 Requirements

To evolve ANNs with a scalable genetic algorithm, search frameworks are re-
quired to scale horizontally and vertically i.e. efficiently utilize resources depend-
ing on particular computing capabilities and number of available computers. For

? Equal contribution
1 Small CNNs take several minutes to train, compared to days or weeks for state-of-

the-art neural networks.

https://github.com/HULKs/ditef
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example at HULKs, computing resources are heterogeneous and shared with
other experiments. Efficient utilization of this hardware needs dynamic coordi-
nation and scalability. Memory-intensive tasks must be prevented from running
on low-memory hardware and evaluation must be scaled on demand depend-
ing on other experiments. Neural network libraries, such as Tensorflow [1] and
PyTorch [12], are commonly used to train and evaluate neural networks. These
libraries represent complex and volatile dependencies due to their active develop-
ment. To increase flexibility, evaluation code must be separated from algorithm
code in the distributed system.

1.2 Related Work

”Distributed Evolutionary Algorithms in Python” (DEAP) [7] is an evolutionary
computation framework that implements state-of-the-art genetic algorithms and
corresponding tools. DEAP uses ”Scalable Concurrent Operations in Python”
(SCOOP) [8] for distributed evaluation. Representing neural network architec-
tures requires complex data structures. However, DEAP operates on list based
data structures which require complicated conversion procedures to encode this
information. For the use case of this paper it is necessary to dynamically add and
remove worker instances, but SCOOP requires a static list of hosts at startup.
Furthermore, in SCOOP, both the algorithm and the evaluation code must be
defined in a single Python file or imported from it which prevents dependency
separation. DEAP waits for all pending CNN candidates to be evaluated before
advancing. This can lead to idle workers when evaluating the last pending CNNs.

Ray Tune [9] is an optimization framework providing distributed hyperpa-
rameter tuning. It supports many state-of-the-art optimization algorithms and
is built upon the Ray Core [15] distributed task execution framework. Similar to
SCOOP, Ray Core does not support separating algorithm and evaluation code.
Since Ray Tune does not include a genetic algorithm, it needs to be implemented
to fit the use case of this paper. Although it has a graphical user interface for an-
alyzing suggestions, Ray Tune lacks introspection of the algorithm which hinders
debugging when implementing new algorithms.

”Genetic Algorithm Framework in pyThon” (GAFT) [18] is a framework for
genetic algorithms that can be parallelized by using the Message Passing Inter-
face (MPI). As with the previous frameworks, GAFT does not support separating
algorithm and evaluation code. Like in DEAP, the genetic algorithm waits for
evaluation of all pending CNNs before advancing which reduces parallelization.

In conclusion, none of the presented frameworks meet all of the requirements.
Some genetic algorithm implementations lack parallelism and therefore are not
scalable. Furthermore, distributed task execution frameworks sometimes do not
support constrained execution for heterogeneous hardware. Most genetic libraries
tightly couple the algorithm with evaluation which violates the code separation
requirement.



Neural Network Architecture Search Using a Distributed Genetic Algorithm 3

1.3 Contribution

To overcome the limitations of existing frameworks, this paper presents a dis-
tributed, dynamically scalable genetic algorithm capable of evolving neural net-
work hyperparameters. The implementation consists of a generic distributed task
execution framework with code separation and a restructured genetic algorithm
for better resource utilization.

2 Prerequisites

As an example, the distributed and dynamically scalable genetic algorithm can
be used to evolve neural networks. In the RoboCup SPL the NAO robot is used
for playing soccer in a competition. An important task for the robot is to see
the ball during the competition using its two cameras (Figure 1). According to
Zhao et al. [17] and Erhan et al. [5], object detection in spatially related data
such as visual imagery is a problem that can be solved with CNNs. They are
often used either on the whole image or smaller samples. The HULKs operate
on 32 × 32 pixel grayscale samples from the 640 × 480 pixel original images.
Typically, ANNs are organized in layers, for example fully-connected layers or
convolutional layers and their extensions. Activation functions make deep neu-
ral networks non-linear to allow approximation of any function if the neural
network has sufficient complexity as shown by e.g. Cybenko [3]. Optimizers en-
able fitting ANNs to training data. The set of layers and activation functions of
neural networks is called its architecture. Layers, activation functions, and op-
timizers have configuration parameters which are called hyperparameters. The
architecture and hyperparameters have to be tuned for a specific application.

Since the NAO robot has limited processing capabilities2 it can only feasibly
execute neural networks that are small and fast. For detecting balls at the NAO
camera’s frame rate, images must be evaluated 60 times per second. Hence, state-
of-the-art CNNs for visual object detection, like YOLO [13] or RetinaNet [10],
are too complex for the available processing power. The ball detection at HULKs
is implemented by filtering several hundred 32× 32 pixel samples for a potential
ball in each frame (Figure 1, right). This results in 103 to 104 inferences per
second which requires sub-millisecond evaluation time per sample.

Genetic algorithms as described by Mitchell [11] can be used to generate effi-
cient CNNs and find optimal neural network architectures and hyperparameters
for the ball detection as mentioned by Budden et al. [2], Teimouri et al. [16],
Felbinger et al. [6], Elsken et al. [4], and Ren et al. [14]. Genetic algorithms
are optimization algorithms which simulate natural genetic processes. A genetic
algorithm contains one or more populations with multiple individuals. These
individuals are represented with a genome and can evaluate to a fitness metric.
A genetic algorithm is a solution suggestion algorithm where operations on the
populations and individuals generate new candidate solutions. New genomes are

2 CPU: Intel® Atom® Processor E3845, GPU: Intel® HD Graphics for Intel® Atom®

Processor Z3700
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Figure 1: NAO robot in a ball detection situation. On the left, NAO robot with
its two cameras in the head. In the middle, a ball from the robots perspective. On
the right, an image from the robot’s camera augmented with debug information
about the ball detection.

created by randomly generating, mutating, or recombining other individual’s
genes and genomes. Through these operations, genetic algorithms continuously
evolve their populations. Moreover, they improve the average fitness over time
by preferring fitter individuals.

Genetic algorithms require repeated evaluation of candidate solutions, for
example, training and evaluating neural networks. Since this step is quite slow,
it is a good target for optimization. Parallelization can significantly speed up
the genetic process by evaluating multiple candidates at the same time. To allow
utilization of more than one computer, communication and discovery must be
coordinated in a network. Distributed task execution frameworks exist to solve
this common problem. In such frameworks, evaluations of genetic individuals can
be modelled as tasks. These frameworks usually consist of task producers, task
workers, and optionally a task router. A genetic algorithm generates new tasks
as a task producer. Evaluations of candidate solutions are performed by task
workers. The task router coordinates between the other components, queueing
pending tasks, and delivering results back to task producers.
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3 Implementation

This section is split into the implementation of a distributed task execution
framework and a genetic algorithm based on it.

3.1 Distributed Task Execution Framework

The task execution framework (Figure 2) follows the general architecture of task
execution frameworks outlined previously in Section 2: Task producers submit
new abstract computation tasks and receive their results. Task workers receive
tasks and generate results by executing them. A task router acts as central
server to which task producers and task workers can be dynamically connected
and disconnected while the system is running.

Figure 2: Distributed task execution framework consisting of task producers, task
router, and task workers. The task router in the center contains a schematic
representation of the multi-queue.

When a task producer wants to execute a task, it sends a representation of the
task to the task router. Task representations consist of a task type and payload.
The task router receives tasks and appends them to the queue corresponding
to the task type. When a task worker is idle, it requests a new task of one of
its supported types from the task router. The task router tries to deliver a task
from one of the requested queues to the task worker. Once a task is available, it
is dequeued and marked as reserved to prevent another execution. A task worker
receiving a task executes it generating the execution result. The executed code
is selected via the received task type. The result is returned to the task router
where it is forwarded to the task producer which queued the task.

The implementation of task producer and task router is written in Python.
Concurrent programming paradigms of the Python asyncio library are used for
efficient resource usage in input/output intense and networking sections.

In order to achieve the required code separation, task producers and task
workers are implemented in independent Python modules and executed as sepa-
rate programs. The executed code for each task is implemented in a Python mod-
ule that is imported by the task worker and selected via the received task type.
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Communication occurs over the Hypertext Transfer Protocol (HTTP) where
the task router provides the server and both task producer and task worker
act as clients. HTTP allows implementing specialized task workers in a differ-
ent language than Python by only implementing the HTTP interface between
task router and task worker. The application programming interface client (API
client) used in the task producer supports interleaving of HTTP requests which
allows concurrent task execution.

The central task router implements a multi-queue that stores all requested
tasks of different types until they are assigned to an idle task worker. The task
router probabilistically selects a task from the multi-queue to ensure fairness
during task assignment. Once assigned, the tasks are dequeued and stored in
a separate pool. After a timeout caused by missing task worker heartbeats,
tasks in this pool are returned to the tail of the multi-queue. The use of the
multi-queue allows for heterogeneous task workers to coexist in the network and
be connected to the same task router because they can request different task
types. In practice, task workers may be instantiated dynamically by the user
according to the available computing resources. This allows careful scaling to
prevent resource exhaustion during algorithm execution without interrupting
other components of the system.

All components are designed to be resilient against network disconnects and
program crashes. This is achieved by attempting to reconnect and sending regu-
lar heartbeats with corresponding timeouts. Exceeded timeouts cause the com-
ponents to retry previously requested operations which results in strong fairness.
If the probability for connection failures and process crashes is below one, an
execution of a task will eventually succeed, i.e. the result is received at the task
producer. This liveness property holds because the task producer and task router
retry the execution.

Each task worker executes tasks sequentially but can support multiple task
types which are requested from the task router. However, even when requesting
multiple task types, the task router always returns only a single task matching
one of the requested task types.

As an example in Listing 1.1 the summation of two numbers is implemented
with a task producer and the result is printed to the standard output of the
program. First, an API client is constructed with the address to the task router.
After that, a new task of type summation with the payload of two numbers is
created and queued. After execution the result is returned and stored in the
result variable which is printed to the standard output.
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1 from ditef_router.api_client import ApiClient

2

3 async with ApiClient(url=’http ://task -router :8080’) as client:

4 result = await client.run(

5 task_type=’summation ’,

6 payload =[42, 1337],

7 )

8 print(result) # 1379

Listing 1.1: producer.py implements a simple task producer.

The implementation of the task worker module in Listing 1.2 for the task
producer only consists of a run() function which is loaded by its module name
and executed for every task. It receives the payload of a task and returns its
result which in this example is the sum of the payload.

1 def run(payload ):

2 return sum(payload)

Listing 1.2: summation.py implements a task worker module for summation.

This simple summation example can be expanded to evolving neural networks
using a genetic algorithm.

3.2 Genetic Algorithm

The genetic algorithm is implemented as a task producer in the aforementioned
distributed task execution framework. The evaluation of an individual is repre-
sented by a task. When the algorithm generates a new individual with its genetic
operations, the genome acts as the task payload. The task worker calculates the
neural network metric and sends the result back to the algorithm where it is
used for determining the fitness metric.

Genetic algorithms e.g. by Felbinger et al. [6] that evolve entire populations
at a time can lead to idle task workers towards the end of each generation.
To avoid idle time, this paper presents a sliding window approach where single
individuals are added or removed from a persistent population over time. The
number of unevaluated individuals is configurable and realized by running more
than one loop per population.

To implement this sliding window approach, the main loop of the algorithm
is split into three steps. First, a configurable minimum population size is en-
sured by spawning randomly generated individuals. Next, one of four spawning
strategies is chosen at random and used to create a new individual. Lastly, if
the population size exceeds an upper threshold, already evaluated individuals
with the lowest fitness value are culled successively. Keeping the best individ-
uals across iterations is also called elitism. To prevent less fit individuals from
being removed immediately, the population is also culled probabilistically below
the maximum size. These steps are repeated indefinitely.
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New individuals can be created in four different ways. When generating an
individual by migration between populations, a random member is selected and
cloned from a random population. Another strategy is to clone an existing indi-
vidual of the population where the whole genome is copied and random muta-
tions are applied. The third method is to generate a random individual. However,
the generation of a random genome may be non-trivial and depends on the in-
dividual type. Therefore, individual types provide their own random generators.
The last strategy to generate a new individual is by cross-over where two parent
individuals are selected from the population at random. The new genome is then
constructed from genes of both parents before random mutations are applied.

The genetic algorithm also serves a web interface which allows interaction
and debugging of the genetic algorithm. It can be used to change configuration
parameters, add and remove populations, as well as monitoring. An individual’s
configuration and visual representation of the neural network architecture is
shown in the individual view (Figure 3). It also shows parents, children, and
the spawning strategy of the selected individual. Population views (Figure 4)
contain a list of its members, statistics about the individuals, and graphical
plots showing the history of the fitness metric and population size.

Figure 3: Individual view of the web interface for interaction and debugging con-
sisting of a genome visualization, fitness score, and other training information.

Individuals of genetic algorithms must be specified in the problem domain,
in particular the genome and fitness representation. The genome in this imple-
mentation represents the network architecture and hyperparameters:
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Figure 4: Population view of the web interface for interaction and debugging.

Convolutional layers Each layer: type, kernel size, activation function, pool-
ing type, pooling size, batch normalization, drop out rate, stride

Dense layers Each layer: size, activation function, batch normalization, drop
out rate

Optimizer Type
Learning rate Initial learning rate and factor per epoch
Training epochs Number of training epochs

As mentioned before, genetic or random operations must be implemented by
the individual type. This is necessary because adding or removing layers that in
turn have their own set of parameters is hard to model with generic mutation
methods. Generating random genomes may result in incompatible layer types
and sizes. The fitness of neural network individuals corresponds to a neural
network performance metric on a test dataset.

4 Conclusion and Outlook

This paper presents a scalable genetic algorithm based on distributed task execu-
tion. The distributed task execution framework allows scaling task execution hor-
izontally and vertically by dynamically adding or removing task workers. Within
the genetic algorithm, or task producer, the iteration loop may be executed mul-
tiple times in parallel to increase concurrency of the individual evaluation. The
task workers request tasks from the task router of a subset of supported types,
allowing them to select which task types they want to execute. This feature can
be used to distribute work selectively across the task workers by configuring
which types they request from the task router. The system is robust against
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network failures, by simply resuming once the connection is re-established. Code
separation in the presented distributed task execution framework allows running
tasks with vastly different dependencies without requiring all nodes of the net-
work to fulfill these dependencies. For example, only the neural network task
worker module has a neural network library dependency.

Abstractions introduced by the implementation of the task producer allows
swapping algorithms and individuals without overhead. This is achieved by in-
troducing a common interface between algorithms and individuals where indi-
viduals provide methods for executing genetic operations which are called by the
algorithm.

In the future, the presented genetic algorithm could be applied to other
problem domains such as robot motion, game state estimation, and robot role
assignment. Different solution suggestion algorithms instead of a genetic algo-
rithm may be implemented, such as tree search or particle swarm optimizers.
Task workers can be executed in any environment, evaluating vastly different
tasks. Therefore, a possible future direction is to run task workers directly on
the NAO robot, for example by evaluating walking parameters on the hardware.
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Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc. (2019), https://arxiv.org/abs/1912.01703

13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 779–788 (2016)

14. Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Chen, X., Wang, X.: A Com-
prehensive Survey of Neural Architecture Search: Challenges and Solutions. arXiv
e-prints arXiv:2006.02903 (Jun 2020)

15. Team, R.: Ray 1.0 architecture (2020), https://docs.google.com/document/d/
1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview

16. Teimouri, M., Delavaran, M.H., Rezaei, M.: A real-time ball detection approach
using convolutional neural networks. In: Chalup, S., Niemueller, T., Suthakorn,
J., Williams, M.A. (eds.) RoboCup 2019: Robot World Cup XXIII. pp. 323–336.
Springer International Publishing, Cham (2019)

17. Zhao, Z., Zheng, P., Xu, S., Wu, X.: Object detection with deep learning: A review.
CoRR abs/1807.05511 (2018), http://arxiv.org/abs/1807.05511

18. Zhengjiang, S.: Gaft - a genetic algorithm framework in python (2018), https:
//github.com/PytLab/gaft

https://arxiv.org/abs/1912.01703
https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
http://arxiv.org/abs/1807.05511
https://github.com/PytLab/gaft
https://github.com/PytLab/gaft

	Neural Network Architecture Search  for Ball Detection Using a  Distributed and Scalable Genetic Algorithm

