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Chapter 1

Introduction

This thesis is written in the context of the RoboCup Team HULKs, which is participating
in the Standard Platform League (SPL). This chapter provides brief information about
the RoboCup and the SPL, as well as the used robotic system NAO and explains the
motivation and goals of this thesis.

1.1 The RoboCup

The RoboCup was founded in 1997, after the success of the chess computer IBM Deep
Blue against Garri Kasparow. The idea was to build soccer robots, which are able to beat
the human World Cup champion team by 2050. Today, the RoboCup consists of various
soccer leagues, such as competitions for housekeeping, rescue or industrial robots. [7]

1.2 The NAO Robotic System

The NAO Robotic System, thereafter referred as NAO, is a 58cm high humanoid robot
from SoftBank Robotics. It is continually developed since 2006 and currently available
in the fifth version [6], an example can be seen in 1.1. The NAO is used by the RoboCup
SPL Teams as well as in this thesis.

1



1.3 The Standard Platform League (SPL) 2

Figure 1.1: HULKs NAO robot before scoring a goal against UChile at the RoboCup
2017 in Nagoya.

The computer in the NAO is based on a 1.6 GHz Intel Atom Z530 and 1 GB RAM. It
has two cameras, each with a maximum resolution of 1288x968 pixels and a field of
view of 72.6◦ [5]. The perceptional fields of the cameras overlap only partially, hence
no stereoscopic vision is possible.

1.3 The Standard Platform League (SPL)

As mentioned, there are several soccer leagues in the RoboCup, each working on a
different goal of research. Within the SPL, all participating teams use the same robot,
namely the NAO robot. As every team uses this platform, this league is focusing on
implementing fast and robust software for real-time soccer purposes.

The games are usually played five versus five. These robots play fully autonomously
and each one takes decisions separately from the others, but they still have to play as a
team by using communications. Two teams play on a green field with white lines and
goal posts, with no other landmarks. To improve the league every year, the rules of the
SPL games get continuously adapted towards those of a real soccer game. Since 2016,
the ball is a realistic white and black soccer one. [8]
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1.4 Motivation

Until 2015, a plain red street hockey ball was used for the games, which could be easily
detected using classic image processing algorithms. Since 2016, a black-white patched
ball was introduced into the SPL. The previous solution in the HULKs framework was
derived from the red ball detection, suffering from many false positives and low detec-
tion ranges.

Approaches based on convolutional neural networks for object detection lead to promis-
ing results in our previous work, such as the robot detection [14]. These methods save
a lot of work, as no manual feature extraction is nessecary. But there are still many
hyperparameters for the structural setup of the networks. The central idea of this thesis
is to determine these parameters by a genetic optimization approach.

1.5 Overview of existing Approaches

This section briefly explains solutions of other teams ball detections. The common
approach for object detection in all teams consists of two steps. First, candidate regions
which may contain the object must be found. Second, found candidate regions are
classified. The work of the following teams will be explained: B-Human, Nao-Team
HTWK and Bembelbots.

1.5.1 Nao-Team HTWK

The candidate generation of HTWK scans the image for blocks below a pre-calculated
field limitation with high contrast characteristics. The difference of the CB channels
between the inner and outer regions of the object are calculated by the means of the
estimated ball size afterwards. Black and white colored pixels have higher values in the
CB channel than green colored (field) pixels.

The classification is separated into two stages to save computing time. The first stage
is a two hidden-layer neural network, which classifies about ten hypotheses per image,
each of size 9x9 pixels. The second stage is an eight layer CNN, which uses 20x20 pixel
patches. It only classifies the hypothesis with the best score given by the first stage. The
statistics of their testset are 90.3% recall and 99.3% precision. The detailed description
can be found in the team research report from 2016 [12].
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1.5.2 B-Human

The approach of B-Human does not depend on a trained model at all [2].

The candidate generation scans the image vertically using scan lines of different density
based on the size of the ball. To determine ball candidates, these scan lines are searched
for sufficiently large gaps in the green that also have a sufficiently large horizontal ex-
tension and contain enough white. The candidates position is afterwards improved by
evaluation of the contour in a contrast-normalized Sobel image of the candidate.

The classification step is done by multiple filters:

1. Thresholding the response of the contour evaluation in the previous step
2. Comparision of the estimated radius with the projected radius
3. Dropping candidates inside detected robots which are not in the lower area
4. Checking the surface pattern of candidates, which are not surrounded by field

color

1.5.3 Bembelbots

The candidates for the training phase were generated from a simulated environment
[11, pp. 2-5]. The trained model was tested against real data, yielding a accurasy of
approximately 91% [11, pp. 9].

1.6 Goals

The aim of this thesis is to optimize the structure of a convolutional neural network
(CNN) using a genetic algorithm. The resulting network should be inferencable on the
NAO during a game. The runtime per candidate should be higher than 25 ms on the
NAO. During such a game, the measurements of the ball detection are used to maintain
a world model over time. A ball which is not detected in an image will still be within
the world model. On the other side, a detected ball which is actually not there can easily
lead to a wrong world model. Hence for the classification performance, the true negative
rate is more important than the true positive rate. The resulting network should have a
true negative rate above 95% with a true positive rate of at least 80% to be usefull within
a SPL game.
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1.7 Problem Overview and Thesis Structure

The prerequisites chapter explains the basic terms, used software and the algorithm
which was developed as a part of this thesis. The data aquisition chapter shows, how
the data for learning the models was generated and set up.

After the data is set up properly, the network architecture can be optimized for the
problem using a genetic algorithm, as described in chapter genetic desgin of CNNs.
The according experiments and their results can be found in chapter experiments and
evaluation. Further evaluations like an input optimization and generalization test of the
resulting network is described in chapter further evaluation.

Finally, chapter conclusion and outlook summarizes the thesis and give an outlook to
possible future work.



Chapter 2

Prerequisites

In this chapter, the basic terms for this thesis are explained. It also includes the used
software and libraries as well as a brief description of genetic algorithms, artificial neu-
ral networks and convolutional neural networks.

2.1 Basic Terms

There are many common terms in the field of machine learning and artificial intelli-
gence. As this thesis focuses on genetic algorithms and convolutional neural networks,
these terms itself and related ones are explained.

2.1.1 Metrics

The classifier, which maps an example image to a class, is evaluated using the following
metrics. The set of positives p is the set of example candidate images containing a ball.
The other candidate images are assigned to the set of negatives n.

True positives (tp) are those examples from the setup p, which were assigned to a ball
by the classifier. The true negatives (tn) are those examples from the sets n, which were
not assigned to a ball, respectively. False positives / false negatives (fp / fn) are the
images from p / n, which were assigned to the wrong class, respectively.

The true positive rate is the relative amount of correctly assigned examples within the
set p: tpr = |tp|

|p| . The true negative rate is analog: tnr = |tn|
|n| .

6
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2.1.2 k-fold cross-validation

In k-fold cross-validation, sometimes called rotation estimation, the dataset D is ran-
domly split into k mutually exclusive subsets (the folds) D1,D2, ...,Dk of approximately
equal size. The classifier is trained and tested k times; each time t ∈ {1,2, ...,k} it is
trained on D \Dt and tested on Dt [15, pp. 2-3]. Figure 2.1 illustrates a 4-fold cross
validation.

Figure 2.1: Diagram of k-fold cross-validation with k=4. [9]

2.2 Used Software

2.2.1 HULKs NAO Framework

The HULKs NAO Framework is the software which runs on the NAO during SPL
games, written in C++. It can also be used for testing and debbuging purposes, together
with the OFA Tool. Beside the NAO, it has multiple more compile targets, i.e. for run-
ning the software with SimRobot.

2.2.2 HULKs OFA

The HULKs OFA tools is a debbuging and configuration tool for the HULKs NAO
Framework. It is used to visualize results of vision pipeline such as the image segmenter,
ball detection, etc.
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2.2.3 Tensorflow

TensorFlow is an open source software library for numerical computation using data
flow graphs. Nodes in the graph represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) communicated between them.
The flexible architecture allows to deploy computation to one or more CPUs or GPUs
on a desktop, server, or mobile device with a single API. TensorFlow was originally
developed by researchers and engineers working on the Google Brain Team within
Google’s Machine Intelligence research organization for the purposes of conducting
machine learning and deep neural networks research, but the system is general enough
to be applicable in a wide variety of other domains as well. [3]

2.3 Genetic algorithm

Genetic algorithms (GAs) were developed by Holland and his students and colleagues
at the University of Michigan in the 1960s and the 1970s. In contrast with evolution
strategies and evolutionary programming, Holland’s original goal was not to design
algorithms to solve specific problems. It was rather to formally study the phenomenon
of adaptation as it occurs in nature and to develop ways in which the mechanisms of
natural adaptation might be imported into computer systems. [19, pp. 3]

There is no specific definition of a genetic algorithm. But most of the proposed algo-
rithms which are called genetic, have common properties: A series of poplations of
individuals, a fitness function yielding how well a individual solves the problem, a re-
combination / mutation function generating new populations based on the fitness values.

The algorithm used in this thesis is based on [10]. The basic elements are chromosomes
or individuals c ∈ Ck, a possible solution in given, k-dimensional search space. Every
individual can be assigned to a value which reflects how well it fits to the problem,
using a fitness function f (c) : Ck 7→ R. A set of n chromosomes which is evaluated in a
training step j is called population Pj = {c1, ...,cn} ⊂ S.

The iterative steps of the algorithms are:

0. Generate random population P0 ∈ Ck

1. For every generation j:

1. Calculation of fitness Fj = ( f (c1), ..., f (cn))
T ∈ Rn,ci ∈ Pj−1

2. Selection of individual for reproduction S j = select(Pj,Fj)
3. Mutation of selected individuals M j = mutate(S j)
4. Recombination of mutated elements, resulting in new generation Pj = recomb(M j)
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2.3.1 Selection

The selection is done using the following steps. According to a given clipping parame-
ter c ∈ [0,1], individuals in the lower percentile than c are dropped. The minimal fitness
within the population is given by minscore = mink∈[1,n]( f (ck)) Given the other m indi-
viduals, the surviving probability is calculated by

p(ci) =
f (ci)−minscore

∑
m
j=1
(

f (c j)−minscore
) (2.1)

Hence the indiviual with the lowest fitness value gets is assigned to the surviving prob-
ability 0. According to this distribution, n elements are sampled for mutation and repro-
duction.

2.3.2 Mutation

For every value within a chromosome c a new value will be sampled based on a given
mutation probabilty pm. If a genom is to be replaced, a new random value will be
chosen.

2.3.3 Reproduction

In the reproduction phase, the selected and mutated parent chromosomes are randomly
pairwise selected, each pair yields two new child chromosomes. For every value within
the chromosome of a child, the corresponding parent value is chosen randomly.

2.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are computing systems inspired by the neurons of a
natural brain. Inputs are fed into a set of neurons which process the information. Figure
2.2 shows the structure of an ANN.
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Figure 2.2: An artificial neural network is an interconnected group of nodes, akin to
the vast network of neurons in a brain. Here, each circular node represents an artificial
neuron and an arrow represents a connection from the output of one neuron to the input
of another. [@wiki-ann-struct]

2.4.1 Neurons

As in a natural brain, the computation is done by single neurons. Figure 2.3 shows the
functionality of those.

∑ f

bj

w1j

wnj

1

x1

xn

...
yⱼ

Figure 2.3: The functioning of a single neuron j. First, the input vector gets element-
wise multiplied by the weight vector. Afterwards the bias is added to the sum of the
resulting vector. Finally, the value is applied to the activation function, yielding the
output of the neuron.
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Given a layer of k neurons with input vector x ∈ Rn, weight matrix W ∈ Rk×n and bias
vecotr b ∈ Rk. The result of neuron j can be computed as y j = f (W. jxT + b j), where
the Wj. is the j-th column of W . Hence a whole layer of neurons can be computed as
y = f (WxT +b).

2.4.2 Activation functions

In biology, a neuron “fires” in a non-linear way depending on the input [20, pp. 1065].
In ANNs, this is achieved by applying an activation function to every value of a layers
output. In this thesis, the following activation functions are investigated.

2.4.2.1 Hyperbolic tangent

The hyperbolic tangent is a S shaped function which maps the input to the range [−1,1].
It can be used as a differentiable model for binary output.

tanh(x) =
ex− e−x

ex + e−x (2.2)

2.4.2.2 Rectified Linear Unit (ReLU)

The ReLU function has become one of the most popular activation functions for neural
networks, due to the computation simplicity. It maps every positive input to itself, while
dropping all negative inputs to zero.

relu(x) =

{
x ,x < 0
0 ,otherwise

(2.3)

2.5 Convolutional Neural Networks

CNNs have become very popular in the recent years for object detection in images. It
is the leading approach in various benchmark datasets. For example, in the MNIST
dataset, CNN based approaches lead to the best results with a test error rate of down to
0.23 [17]. In the CIFAR-10 dataset, CNNs achieved a accuracy of up to 96.53% [1].

They extend ANNs by adding convolutional, pooling and normalization layers before
fully connected layers which then calculate the final output.
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2.5.1 Convolutional Layer

As the name suggests, convolutional layers apply a trainable convolution mask on the
input. In this thesis, only 2-dimensional convolutions are used, meaning a input image
with q channels is mapped to an output image with k channels. Equation eq. 2.4 shows
the computation of a convolutional layer.

yi, j,k = ∑di,d j,q xi+di, j+d j,q ·mdi,d j,q,k

x ∈ Ri× j×q,m ∈ Rdi×d j×q×k
(2.4)

2.5.2 Pooling Layer

Pooling layers are used for downsampling images between convolutional layers. They
reduce every dimension of every image channel by applying a reduce function to neigh-
bouring pixels. In this thesis, only max(a,b,c,d) (maximum value of arguments) and
avg(a,b,c,d) (arithmetric mean of arguments) are used. Figure 2.4 demonstrates a 2x2
max-pooling layer for a single channel image.

Figure 2.4: Schematic drawing of a 2x2 sized max-pooling layer downsampling an 4x4
input to 2x2 with a stride of 2 so that no overlapping occurs. [18]

2.5.3 Normalization layer

Batch Normalization Layers are used to increase the learning rates and to reduce the
sensivity to the initialization of the weights [13].

During training, the normalization is calculated batch-wise. For input vectors 1...m:

BNγ,β (xi) = γ · xi−µB√
σB + ε

+β (2.5)
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[13, pp. 3].

The scale γ and offset β are trainable parameters which get optimized due to the training
problem. The batch mean is elementwise computed by µB = 1

m ∑
m
j=1 x j. The batch

variance is also elementwise computed by σB = 1
m ∑

m
j=1(x j−µB).

For the inference, the mean and the variance are approximated by a moving average
approach during the training [13, pp. 4]. The mean µn and the variance σn after the n-th
batch can be computed recursively using the batch mean and variance:

µn = µn−1 ·δ +µBn · (1−δ )
σn = σn−1 ·δ +σBn · (1−δ )

(2.6)



Chapter 3

Data Aquisition

This chapter describes the aquistion of the data used for training and testing. It is split-
ted in the following sections: The algorithm to generate candidates from an image to
classify and the labeling procedure candidates.

3.1 Candidate Generation

The previous candidate generation has hard dependencies on the field color detection.
From 2017, all games are played on an artificial green turf instead of a green carpet, the
field color approach gets worse.

A new approach has been implemented based on the vertical scanline image and pro-
jection. After classifying, the generated candidate images, including the result of the
current classifier for validation purposes are logged. This ensures that the candidates
used for training the network are generated in the same way as during inference. An-
other advantage is that the result of the classification can directly be saved with the
candidate. This enables the possibility to directly evaluate an old classifer during the
collecting of new data.

3.1.1 Available Data

This section briefly describes the already available data within the HULKs Framework
that can be used.

14
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3.1.1.1 Raw Image

The raw image is available with a resolution of 640x480 pixels. The color space is the
YCbCr 422. The brightness given within the y channel is stored for every pixel. The
color information given within the cb and cr channels is shared with the neighbour-
ing pixel. The resulting data structure of two consecutive pixels in the image data is
therefore y0 cb y1 cr

3.1.1.2 Segmented image

Within the HULKs Framework, the raw image is already preprocessed for fast compu-
tation. The image is segmented using vertical scanlines on every second column of the
640x480 raw image. Along those scanlines, it computes the two dimensional gradient
of the image. Whenever this gradient gets greater than a configured threshold, a new
segment along this scanline is created. The color of each segment is determined by a
median of five pixels with equal distance along it.

Figure 3.1: The result of the image segmenter in the HULKs Framework. Top Left:
The raw image from the upper camera. Top Right: The raw image from the lower
camera. Bottom Left: The segmented image of the upper camera. Bottom Right: The
segmented image of the lower camera. Areas above the horizon determined by the
projected distance are ignored.
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3.1.1.3 Camera Matrix

The camera matrix contains the information of the intrinsic and extrinsic parameters. It
provides an API for convient projection of world and pixel coordinates.

While the intrinsic parameters are calibrated by hand, the extrinsics (camera to ground)
are determined during runtime. Given the assumption that at least one of the robots feet
stands on the ground, the extrinsic parameters are determined by the joint angles of the
robot.

3.1.2 Generating Seeds

As the first step of the candidate generation, the algorithm determines seeds for possible
candidates. A seed is the centering pixel of a segment, which passes a series of checks:

1. First, y channel of the corresponding region must be lower than 100 which natu-
rally corresponds to the black patches of the ball.

2. Afterwards, the corresponding ball radius in pixels rp at the seeds position is
calculated using the camera matrix. If the ratio rs =

ls
rp

of the segments length ls
to the pixel radius is not within the range [0.1,0.7], the seed is dropped.

3. Afterwards the neighbouring areas of the black patch are checked. Therefore the
y values in eight directions around the seed with a distance of rp/2.5 are sampled.
All of those sampled values must be at least 8 higher than the y value of the seed.
Also, at least 5 of those value must be at least 25 higher than the y value of the
seed.

If all conditions match, the seed is used for the candidate generation.
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Figure 3.2: Found seeds on a ball. Blue crosses illustrate the neighbouring checks of
seeds. The center of each cross is at the position of a seed. The end points correspond
to the sampled pixels for the checks.

3.1.3 Merging seeds to candidates

After the calculation of all seeds in an image, nearby seeds get merged to candidates.
First, an empty set of candidates is initialised.

For every seed in the image, it is checked if there is a nearby candidate with a maximum
distance of a balls diameter in pixels. If a candidate is found, the current seed will
be merged into that candidate, by taking the mean of the position and radius. If no
candidate was found, a new candidate with position and radius of the current seed is
added to the set of candidates. The candidates are filtered afterwards, such that only
candidates based on at least 2 seeds are left.
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Figure 3.3: Candidate (green circle with green cross in center) derived from merged
seeds. The seeds (blue crosses) got merged as they are within the distance of the balls
diameter. The candidates center and radius are determined by the mean of the projected
radii and centers of the seeds.

3.1.4 Reprojection of found balls

The measurements of the ball detection are tracked within a world model afterwards.
This yields a position at the last cycle and a velocity vector. By multiplying the velocity
vector by the cycle time and adding it to the position, the current position in world
coordinates can be determined. This position gets reprojected into the image, yielding
another candidate.

Figure 3.4: Reprojected ball candidate (green circle within black bounding box). After
reprojecting the tracked measurements of the ball filter, a new candidate for the classifier
is generated.
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3.1.5 Saving the candidates

The generated candidates can be directly written to the disc on the NAO, with the esti-
mated class in the filename for evaluation purposes. While there is no classifier in the
beginning of the project, all candidates will be labeled as ‘false’.

3.2 Labeling

After collecting the candidates during test games, they have to be labeled for training.
For this purpose a tool called ‘tinball’ was implemented to delegate the labeling process
to the whole hulks team.

The tool shows a grid of nine images and preselects them according to the result of
the classifier used during the generation. At first, images which are not yet labeled get
randomly selected. If there not enough of those images for display, already labeled
images get selected randomly. It is possible that one image is labeled multiple times,
and every label is logged. This enables the possibility to find edge cases more easily.

Figure 3.5: The labeling tool ’tinball’. Images are saved in YCbCr and interpreted as
RGB. The classes determined by the classifier during generation are pre-labeled.
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3.3 Data Setup

The data used for training and evaluation of the classifier was collected during various
events:

• RoboCup 2016 (Leipzig)
• Iran Open 2017 (Teheran)
• German Open 2017 (Magdeburg)
• Weekly Test Games (HULKs Laboratories)

The data used during the development of the training consisted of 16880 positive ex-
amples (candidate images containing a ball) and 23876 negative examples (candidate
images not containing a ball). During the training, the negative examples are subsam-
pled randomly, such that in every cross-validation set the same amout of positive and
negative examples are present.

The final network derived in this thesis was evaluated with data collected at a testing
event in the laboraties of HULKs mixed-team partner B-Human.

This can be considered as a proper generalization test because no data from these testing
conditions was used during the development. The test data contained 5687 postive and
12730 negative examples.



Chapter 4

Genetic design of CNNs

The topology of the networks was optimised using the genetic algorithm mentioned in
section genetic algorithm. Therefore, a network topology refers to an indiviual within
the search space.

4.1 CNN Structure

The following common structure is used for creating all networks in the search space.
First, the input image is resized to a fixed size using nearest neighbour interpolation.
Then, multiple convolutional layers, each with an defined mask size are applied. Be-
tween every convolutional layer, a pooling layer with an activation function may be
applied. The next step is a batch normalization layer. Finally, a fully connected network
with a certain depth of hidden layers is applied. The general structure of a network is
illustrated in figure 4.1.

21
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Convolution Layer 1

2DCL Pool Act
YCbCr
Image

Convolution Layer 2

2DCL Pool Act ...

Fully Connected Layer

Input
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Hidden
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Output
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Batch
Normalization Output Vector
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Figure 4.1: The general structure of a CNN used in the experiments. First, the image
gets resized to a a quadratic size. Then, for each convolutional layer a two dimensional
convolution mask is applied (2DCL) followed by a pooling layer (Pool) and an activa-
tion function (Act). After normalizing the resulting image, a multi-layer ANN is applied,
yielding the final output vector.

There are many degrees of freedom (dof) for this topology of a network. The resizing
layer has one dof, as the image gets resized to a quadratic shape. For each convolutional
layer, there are five degrees of freedom: the number of output channels, the mask size
in both dimensions, as well as the used pooling type and activation function. Finally,
the dof of the fully connected ANN consist of the amount and size of the hidden layers,
and the used activation function.

4.2 Search space

The search space for the genetic algorithm consisted of the parameters described in
section CNN structure with the value range described in the following. The input image
was sampled within the range [8,16] ∈ N. The amount of convolutional layers was
limited to two. For each layer, there have been five layers at maximum with sizes within
[2,3]∈N in both dimensions. The pooling functions was selected from no pooling, max-
pooling or avg-pooling. The activation function was either tanh or relu, same holds for
the fully connected part. There were four hidden layers at maximum in the ANN, each
with a number of neurons within [2,20] ∈ N.
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4.3 Fitness function

The fitness function consists of two major parts. The approximation of the inference
complexity of a network and the classification performance of a network.

4.3.1 Classification performance

For each network, a k-fold cross validation will be executed, yielding k values of tnrnk, tprnk
of that network n. In order to approximate a lower bound of these perfomance metrics,
the difference of the mean and the variance is used for the fitness function. The tprn for
a network n is computed by:

tprn = mean(tprn1, ..., tprnk)−var(tprn1, ..., tprnk) (4.1)

, where mean is the arithmetic mean and var is the variance of their arguments. The tnrn
of a network is calculated analog to the tprn:

tnrn = mean(tnrn1, ..., tnrnk)−var(tnrn1, ..., tnrnk) (4.2)

4.3.2 Inference complexity

The complexity of a network is asymptotically approximated and lineary scaled. The
complexity cc of a convolutional layer i is approximated by

cci =
Ix · Iy · Ic ·mx ·my ·mc

Îx · Îy · Ic · m̂x · m̂y · m̂c
=

Ix · Iy ·mx ·my ·mc

Îx · Îy · m̂x · m̂y · m̂c

{#eq:comp-c},

where Ix, Iy, Ic corresponds to the layer input size and depth, mx,my,mc to the amount
and size of the convolution masks in this layer, while the Îx, Îy, m̂x, m̂y, m̂c correspond to
the maximum values as defined in the search space.

The complexity cf of the fully connected part is approximated by

cf =
∑

k
i=1 si · si−1

∑
k
i=1 ŝi · ŝi−1

(4.3)

, where k is the number of hidden layers and si the size of layer i. s0 is the input vector
size.
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The final complexity of a network topology with k convolutional layers is then

cn = 1− ∑
k
i=1 cci + cf

k+1
(4.4)

4.3.3 Resulting fitness function

Given the approximation of the classification performance and the inference complexity,
the resulting fitness function is chosen as follows.

fn = 0.7 · tnr2
n +0.25 · tpr2

n +0.05 · cn (4.5)

As described in the goals section, the true negative rate is more important than the
true positive rate, this component has a way higher weight. As the search space is
already limited to topologies which are feasible to inference on the NAO, the inference
complexity got a very low weight within the fittness function, in order to prefer smaller
networks with similar classification performance.

4.4 Inference on the NAO

The Tensorflow framework does not support x86 architectures like the one used on the
NAO. Therefore it is not possible to inference trained models directly on the robot.
The needed functions for inferencing a network where implemented within the HULKs
framework as a part of this thesis and will be with included in the HULKs code release
of 2017.

The saved candidates where resized using nearest neighbour interpolation. On the robot,
the network input is directly sampled from the full image with the same interpolation
mode. Pixels which are outside of the image will be defaulted to zero input.

As defined in section normalization layer, the parameters for the batch normalization
where approximated by a moving average approach during the training. Given these
parameters, the normalization output can be calculated.

The convolutional layers were implemented straight forward according to the defini-
tion in tensorflow API documentation [4]. The output values are calculated according
to {#eq:conv2d}. The pooling functions for average and maximum pooling are im-
plemented for fixed pooling sizes, namely 2x2. During training, the default strategy
‘SAME’ was chosen for padding the image borders. In the Tensorflow framework, this
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means basically zero padding, meaning the value zero is chosen for pixels outside of the
image.

For the matrix multiplication of the fully connected layers, simply two nested for loops
are used. For the hyperbolic tangend activation function, the implementation of the C++
standard library is used. The relu activation is implemented as defined with a simple if
statement.

The code of the implementation can be found on the CD in the directory Projects/nao.



Chapter 5

Experiments and Evaluation

This chapter describes experiments and results of the genetic algorithm. In every exper-
iment, 15 generations with 50 networks in each generation were evaluated. The worst
10% in each generation were excluded from reproduction. The mutation probality were
chosen as 1

16 according to the maximum number of degrees of freedom with the given
search space.

The algorithm should be able to find a proper network as a solution to the ball detection
problem, given a certain amount of training data. To show that this can be achieved,
there were 4 Experiments, with step wise increased amount of data, randomly sampled
from the whole training data. The experiments were executed with 25%, 50%, 75% and
100% of the available training data.

5.1 Experiment 1

In the first experiment, only 25% of the available data was used. The best networks in
the last generation reached a tnr of 91% to 95% with a tpr from about 50% to 75%.
The resulting network has a very small sample size of 8x8, one convolutional layer of
4 masks and only 3 hidden layers in the fully connected part. These networks where
highly biased to reject the input, yielding a high tnr, while having a poor tpr. Figure 5.1
shows the densities of the components of the fitness function as well as the result of the
fitness function itself.

26
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Figure 5.1: Result densities of the fitness function over generations. The tnr plot shows
the densities of the true negative rates lower bound (eq. 4.2) of each generation. The
tpr plot shows the densities of the true positive rates lower bound (eq. 4.1) of each
generation. The complexity plot shows the densities of the complexity penalty (eq. 4.4)
of each generation. The score plot shows the densities of the fitness function results.

While the variance of the tnr got smaller over time, the tpr seemed to got worse. The
networks with a very high tnr in the first generation had also a very low tpr, as figure 5.2
illustrates. These individuals were therefore eliminated due to the weights of the fitness
function.
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Figure 5.2: Classification performance of the networks over generations. Results of the
first generation are plotted with white filled circles. Results of the following generations
are plotted in ascending darker colours.

5.1.1 Population settings

One can see in table A.1, the sample size was nearly equally distributed in the end.

The second convolutional layers extinct very quickly, as shown in the tables A.2 and
A.3. From generation 3 on, there where only a few individuals with two layers left. In
generation 5, networks with two convolutional layers died out completely.

Table A.4 shows, also the hidden layer in the fully connected layer extinced very quickly.
The last individuals having hidden layer existed in generation 12. From this generation
on, the networks resulted in a single linear equtation from the full sampled image to the
output vector with relu activation afterwards.

5.2 Experiment 2

In this experiment, 50% of the available training data was used. The best networks in
the last generation reached a tnr of about 93% with a tpr above 85%. Networks with
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one large convolutional layer and mainly 3 hidden layer in the fully connected parted
dominated this experiment.
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Figure 5.3: Result densities of the fitness function over generations. The tnr plot shows
the densities of the true negative rates lower bound (eq. 4.2) of each generation. The
tpr plot shows the densities of the true positive rates lower bound (eq. 4.1) of each
generation. The complexity plot shows the densities of the complexity penalty (eq. 4.4)
of each generation. The score plot shows the densities of the fitness function results.

Figure 5.3 shows that the scores slightly increased up to generation 4. While the com-
plexity slightly increased over time, the densities of the tnr and tpr kept steady, only
outliers in the tpr got eliminated.
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Figure 5.4: Classification performance of the networks over generations. Results of the
first generation are plotted with white filled circles. Results of the following generations
are plotted in ascending darker colours.

The classification performance was already at a very higher scale than in the first ex-
periment, as illustrated by figure 5.3 and 5.1. Therefore, not only the individuals with
a bad tnr were eliminated, but also the tpr converged over time. Figure 5.4 shows that
there were no outliers with a tpr below 70% in the later generations.

5.2.1 Population settings

One can see in table A.5, the sample size seemed to converge against 12 in the end.

Tables A.6 and A.7 show that the number of convolutional layers clearly converged
against 1. From generation 9 on, only those networks survived. Within this one layer,
the majority of the resulting networks had 5 masks. Most of those masks were of size
3x3. For the activation and pooling function, clearly relu and max pooling dominated
in this experiment.

As already in the convolutional layer, relu activation clearly dominated in the fully con-
nected part, as one can see in table A.8. Most of the networks had 3 hidden layer in the
end.
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5.3 Experiment 3

In this experiment, 75% of the available training data was used. The best networks in
the last generation reached a tnr of about 94% with a tpr above 88%. The best rated
networks in the last generation were slightly more complex, having a higher sample
size and more hidden layers than in experiment 2.
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Figure 5.5: Result densities of the fitness function over generations. The tnr plot shows
the densities of the true negative rates lower bound (eq. 4.2) of each generation. The
tpr plot shows the densities of the true positive rates lower bound (eq. 4.1) of each
generation. The complexity plot shows the densities of the complexity penalty (eq. 4.4)
of each generation. The score plot shows the densities of the fitness function results.

Figure 5.5 shows that the scores slightly increased up to generation 4. The complexity
slightly increased over time. The densities of tnr and tpr kept steady, only outliers in the
tpr got eliminated.
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Figure 5.6: Classification performance of the networks over generations. Results of the
first generation are plotted with white filled circles. Results of the following generations
are plotted in ascending darker colours.

The classification performance converged very quickly in this experiment. The later
generations built a very dense cluster when looking at the correlation plot of figure 5.6.

5.3.1 Population settings

As table A.9 shows, the sample size seemed to converge against 11 in the end.

Tables A.10 and A.11 show that the number of convolutional layers clearly converged
against 1. Within this one layer, the majority of the resulting networks had 5 masks.
From generation 9 on, only those networks survived. Most of those masks were of size
3x3. For the activation and pooling function, it clearly relu and max pooling dominated
in this experiment.

As already in the convolutional layer, relu activation clearly dominated in the fully con-
nected part, as table A.12 shows. Most of the networks had 3 hidden layer in the end.
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5.4 Experiment 4

In this experiment, all of the available training data was used. The best networks in the
last generation reached a tnr of about 95% with a tpr above 90%. While the sample size
and convolutional layers are quite the same as in Experiment 3, the hidden layer part
converged against 4 hidden layers instead of 3.
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Figure 5.7: Result densities of the fitness function over generations. The tnr plot shows
the densities of the true negative rates lower bound (eq. 4.2) of each generation. The
tpr plot shows the densities of the true positive rates lower bound (eq. 4.1) of each
generation. The complexity plot shows the densities of the complexity penalty (eq. 4.4)
of each generation. The score plot shows the densities of the fitness function results.

As Figure 5.7 shows, the distribution of the scores did not increase after the 6th gener-
ation. While the distributions of the tpr and tpr seemed very constant, figure 5.8 shows
that the later generations built again a very dense cluster in the correlation plot. Hence
the algorithm could not really find a much better solution throughout the generations,
but was able to select the best ones and remove the outliers.
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Figure 5.8: Classification performance of the networks over generations. Results of the
first generation are plotted with white filled circles. Results of the following generations
are plotted in ascending darker colours.

5.4.1 Population settings

Looking at the histograms of table A.13, the sample size of the generated candidates has
a bimodal charactor from generation 8 until the last. The peaks in the last generation
where at sample size 11 and 15.

Tables A.14 and A.15 show that the number of convolutional layers clearly converged
against 1. Within this one layer, the majority of the resulting networks had 5 masks.
From generation 8 on, only those networks survived. Considering the size of those
masks, it seems that the neighborhood of image pixels in x is more important than in
y direction. The classification performance is indifferent between maximum pooling
or no pooling. As the maximum pooling reduces the inference complexity due to the
smaller input size into the fully connected layer, the networks with max pooling where
preferred in the end.

As already in the convolutional layer, also in the fully connected part the relu activa-
tion function clearly dominates, as table A.16 illustrates. From generation 8 on, every
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network contained 4 hidden layer. Still, the fully connected parts of the dominating
networks reduce the complexity within the network and enlarge it again.

5.5 Evaluation

The best network of the last generation is considered as the resulting network of the
algorithm. Table 5.1 shows a summary of the resulting networks in each experiment.
The resulting networks became more complex with increasing amount of data, yielding
better classification performance.

Table 5.1: Overview of the resulting networks of the Experiments. The column ‘exp’
lists the number of the experiment. The second column ‘used data’ corresponds to the
amount of data used in this experiment. The columns ‘tnr’, ‘tpr’ and ‘comp’ show the
components of the fitness function. The column ‘score’ corresponds to the resulting
score.

exp used data tnr tpr comp score

1 25% 0.921 0.7 0.732 0.856
2 50% 0.932 0.853 0.663 0.899
3 75% 0.949 0.904 0.64 0.922
4 100% 0.972 0.958 0.638 0.922

In summary, the experiments confirm the expected behavior of finding a proper network
as a solution to the ball detection problem, given a certain amount of training data. They
also show the advantage that no manual design of the network is needed. Still, the opti-
mization of the architecture needs a lot of computation time, as the algorithm has to train
and evaluate (number of cross-validation subsets)·(number of individuals per generation)·
(number of generations) CNNs, in our case 2250 networks.



Chapter 6

Further Evaluation

After running the experiments, the topology of the resulting network of the last experi-
ment was further evaluated. A network with this topology was trained with the complete
dataset. This network was used to investigate it’s classification performance even further
by optimizing the input and a generalization test.

6.1 Input Optimization

The tensorflow graph of the network has been modified, with the weight matrices and
output as constants and the input image as trainable variable. Figure 6.1 shows the
optimization with a real candidate as initialization of the input variable. Figure 6.2
shows the same optimization, but with a zero initialized input.

In figure 6.1, there is slightly more heating in the lower part of the ball. In figure 6.2,
the image got cooled in the middle part and a view surrounding pixels got heated up,
which could correspond to a dark patch.

In summary, the input optimization does not yield really much information about what
is happening within the classifier. That result is not very supprising, as such ‘dream’
images are rarely usefull on such small networks.

36
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Figure 6.1: The result of the input optimization given an image of ball as initial input.
The upper line shows plots of the y, cb, cr channel and the corresponding rgb image of
the initial input. The middle line shows the optimized input image in the same manner.
The last row shows heat plots of the difference in the y, cb, cr channel, as well as an rgb
interpretation of the difference.

Figure 6.2: The result of the input optimization given a zero initialized input. The
upper line shows plots of the y, cb, cr channel and the corresponding rgb image of the
initial input. The middle line shows the optimized input image in the same manner. The
last row shows heat plots of the difference in the y, cb, cr channel, as well as an rgb
interpretation of the difference.
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6.2 Generalization Test

A few weeks before the RoboCup 2017, the HULKs Team attended at a workshop at
the University of Bremen together with B-Human. As this was a complete new environ-
ment, testing the classifier there would be a proper generalization test.

During a test game against B-Human, 18417 images were collected, together with the
predicted class by the network. After labeling those images, the resulting confusion
matrix is:

positives negatives

positive predict 4989 50
negative predict 698 12680

Resulting in a true positive rate of 87,73% and a true negative rate of 99,61%.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

The aim of this work was to find an automated way for a CNN based ball detection
on the NAO robotic system. While implementing a genetic algorithm for designing
such a CNN it was possible to find a network which yields proper classification. By
implementing the nessecary inference functions for the model, it was possible to use the
classifier on the NAO during the RoboCup 2017.

From the results in the Experiments, one can see that the genetic algorithm designs
very small, still good working networks according to the amount of data which is given.
However, the candidate generation could not be evaluated due to the missing ground
truth data. The calculated results of the classifer only express the performance given the
generated examples.

The most important part of solving images processing problems with CNNs is still the
setup of a proper candidate generation and data set, as well as the evaluation of the
training results. Still, the algorithm lead to good results which could be used in the
RoboCup Competitions 2017.

7.2 Outlook

As mentioned in the Conclusion, the candidate generation could not be evaluated. For
future work on machine learning approaches, a better tooling for labeling whole images
would be nessesary.

After the latest success of the HULKs team at the RoboCup 2017, a working robot
detection is more urgent. As the inference of CNNs is very expensive, it will probably

39
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not possible to just apply the network from Chris Kahlefendts project thesis [14] in
addition to this ball detector. The genetic algorithm could be extended to be able to
design multi class problems and the solve the ball and the robot detection within one
network.

Given a multiclass detector, the algorithm can be evaluated on problems outside the
RoboCup Context, for example on MNIST [17] or CIFAR-10 [16] to be comparable to
state of the art solutions.
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Appendix A

Single results of the Networks in the
Experiments

A.1 Detailed results of experiment 1

Table A.1: Histograms over the sample size in every generation. Column ‘#’ shows
the number of the generation. Column ‘sample size’ lists the histograms. The left-most
value corresponds to the number of networks having the lowest sample size. The right-
most value to the networks having the highest sample size.

# sample size

0 (4,4,6,4,6,3,6,10,7)
1 (2,1,5,3,6,7,5,18,3)
2 (3,1,3,4,7,11,4,14,3)
3 (2,0,1,7,7,3,8,17,5)
4 (2,0,0,9,8,0,9,16,6)
5 (3,0,0,10,4,0,10,16,7)
6 (2,0,0,11,2,0,9,18,8)
7 (1,2,2,18,0,1,8,12,6)
8 (2,0,2,10,2,4,12,8,10)
9 (6,0,3,12,2,4,6,7,10)
10 (6,0,4,7,2,9,9,5,8)
11 (10,2,4,10,2,5,7,2,8)
12 (6,1,7,10,1,9,6,0,10)
13 (8,0,6,10,1,6,10,1,8)
14 (8,3,8,5,4,7,8,0,7)
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Table A.2: Histograms over the settings for convolutional layer 1 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (17,18) (11,12,12) (14,21) (17,18) (8,9,7,9,2)
1 (19,20) (13,7,19) (19,20) (16,23) (11,12,7,8,1)
2 (21,18) (14,5,20) (21,18) (15,24) (12,11,7,8,1)
3 (15,25) (7,7,26) (20,20) (20,20) (15,8,7,7,3)
4 (25,20) (7,5,33) (27,18) (23,22) (22,7,7,8,1)
5 (24,24) (8,3,37) (24,24) (21,27) (18,14,8,6,2)
6 (27,23) (10,4,36) (25,25) (27,23) (18,16,6,8,2)
7 (28,22) (18,1,31) (25,25) (32,18) (13,15,11,9,2)
8 (23,27) (25,2,23) (19,31) (37,13) (10,25,4,8,3)
9 (22,28) (25,4,21) (14,36) (33,17) (9,24,4,6,7)
10 (23,27) (31,2,17) (17,33) (32,18) (3,21,3,12,11)
11 (20,30) (32,0,18) (20,30) (31,19) (3,27,2,9,9)
12 (21,29) (35,1,14) (16,34) (34,16) (0,23,5,12,10)
13 (15,35) (35,2,13) (18,32) (33,17) (0,24,4,12,10)
14 (11,39) (37,3,10) (15,35) (24,26) (2,26,5,11,6)

Table A.3: Histograms over the settings for convolutional layer 2 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (10,4) (4,3,7) (5,9) (4,10) (2,2,3,1,6)
1 (9,2) (4,2,5) (3,8) (7,4) (0,6,2,0,3)
2 (5,6) (3,4,4) (3,8) (4,7) (0,3,2,0,6)
3 (2,1) (1,1,1) (0,3) (2,1) (0,1,0,0,2)
4 (2,0) (0,0,2) (0,2) (2,0) (0,2,0,0,0)
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# activation pooling size_x size_y masks

5 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
6 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
7 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
8 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
9 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
10 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
11 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
12 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
13 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
14 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)

Table A.4: Histograms over the settings for the fully connected layer in every genera-
tion. Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The layer column
lists the histograms of the size in every possible layer.

# activation layer

0 (24,26) (2,2,1,1,2,2,2,2,2,4,4,2,3,4,4,1,0,3,0)
(1,3,4,2,1,2,1,3,4,1,1,0,1,1,1,1,1,4,2)
(1,0,0,2,2,3,0,1,1,1,0,1,2,2,3,0,1,0,4)
(0,1,2,2,0,1,1,0,1,1,2,3,0,0,0,0,1,1,1)

1 (30,20) (0,1,0,0,0,6,3,0,1,6,5,2,2,8,7,1,1,2,0)
(0,3,2,1,0,0,2,4,6,1,2,0,2,4,0,1,1,6,1)
(1,0,0,2,2,3,0,0,1,1,0,0,4,1,5,1,0,0,4)
(0,0,0,4,0,4,2,0,1,4,1,0,0,0,0,1,2,1,1)

2 (28,22) (0,0,1,0,0,6,2,0,1,4,4,3,1,9,8,1,0,7,0)
(0,4,1,0,0,0,3,2,11,0,3,0,1,6,0,1,0,7,0)
(0,0,0,2,3,3,0,0,0,5,0,0,5,0,5,2,0,0,4)
(0,0,0,6,0,6,3,0,1,5,3,0,0,0,0,0,1,1,0)

3 (22,28) (0,0,2,0,0,7,1,0,2,4,5,2,0,9,4,2,0,9,0)
(0,1,1,0,0,0,4,2,10,0,1,0,1,7,1,1,0,8,0)
(0,1,0,3,4,2,0,0,0,4,0,0,2,0,4,3,0,0,4)
(0,0,0,5,1,5,4,0,1,4,2,0,0,0,0,0,0,0,0)

4 (24,26) (1,1,1,1,0,5,2,0,0,3,6,3,0,4,4,3,0,12,1)
(0,1,0,0,0,0,4,0,7,0,3,1,2,5,0,0,0,9,0)
(0,0,0,1,4,2,1,0,0,3,0,0,3,0,1,4,0,0,3)
(0,0,0,3,0,6,4,0,0,1,3,0,0,0,0,0,0,0,0)

5 (23,27) (0,1,0,2,1,6,5,0,0,2,5,0,1,3,4,3,1,12,0)
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# activation layer

(1,3,0,0,0,1,0,0,3,0,2,0,2,4,1,0,0,10,0)
(0,0,0,1,0,2,0,0,0,2,0,0,6,0,0,3,0,0,2)
(0,0,0,2,0,3,0,0,0,1,6,0,0,0,0,0,0,0,0)

6 (32,18) (0,0,0,3,0,3,10,0,0,0,4,0,0,5,8,5,0,9,0)
(2,2,1,0,0,4,0,0,4,0,0,0,5,3,0,0,0,8,0)
(0,0,0,2,0,6,0,0,0,3,0,0,5,0,0,1,0,0,4)
(0,0,0,3,0,1,0,0,0,2,5,0,0,0,0,0,0,0,0)

7 (30,20) (0,0,0,1,0,1,13,1,0,0,0,0,0,6,8,4,0,14,0)
(0,0,0,0,0,1,0,0,5,0,0,0,7,2,0,0,0,9,0)
(1,0,0,1,0,7,0,0,0,5,0,0,0,0,0,1,0,0,0)
(0,0,0,4,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0)

8 (31,19) (0,0,0,0,0,1,23,1,0,0,0,1,0,3,9,4,0,7,0)
(0,0,0,0,0,1,0,0,2,0,0,0,8,0,1,0,0,8,0)
(0,0,0,0,0,8,0,0,0,3,0,0,0,0,0,1,0,0,0)
(0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0)

9 (34,16) (1,0,0,0,0,0,25,0,0,0,0,0,0,3,9,3,0,9,0)
(0,0,0,1,0,4,0,0,3,0,0,0,5,0,2,0,0,5,0)
(0,0,0,0,0,9,0,0,0,5,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0)

10 (36,14) (0,0,0,1,0,1,22,0,0,0,1,0,0,3,9,5,0,8,0)
(0,0,0,1,0,9,0,0,0,0,0,0,1,0,3,0,0,7,1)
(1,0,1,0,1,8,0,0,0,2,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0)

11 (30,20) (0,1,0,0,0,0,18,0,0,1,0,0,0,1,12,8,0,9,0)
(0,0,0,0,0,11,0,0,0,0,0,0,1,0,4,0,0,8,0)
(1,0,2,0,0,9,0,0,1,3,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0)

12 (27,23) (0,0,0,1,1,0,11,0,0,4,0,0,0,3,11,3,1,15,0)
(0,0,0,0,1,8,0,0,0,0,0,0,0,1,3,0,0,6,0)
(0,0,3,0,0,6,0,0,2,1,0,0,0,0,0,0,1,0,0)
(0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0)

13 (25,25) (0,0,0,2,0,0,13,0,0,3,0,0,0,3,15,2,1,11,0)
(0,0,0,0,3,7,0,0,0,0,0,0,0,0,5,0,0,4,1)
(0,0,3,0,0,5,0,0,3,1,0,1,0,0,0,0,3,0,0)
(0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0)

14 (21,29) (0,0,0,3,0,0,10,0,0,2,0,0,1,1,18,2,0,13,0)
(0,0,0,0,6,8,0,0,0,0,0,0,0,0,7,0,0,2,0)
(0,0,4,0,0,7,0,0,4,1,0,1,0,0,0,0,4,0,0)
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# activation layer

(0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0)

A.2 Detailed results of experiment 2

Table A.5: Histograms over the sample size in every generation. Column ‘#’ shows
the number of the generation. Column ‘sample size’ lists the histograms. The left-most
value corresponds to the number of networks having the lowest sample size. The right-
most value to the networks having the highest sample size.

# sample size

0 (6,4,6,3,6,7,7,6,5)
1 (5,6,5,6,8,1,8,5,6)
2 (2,6,6,3,3,1,13,7,9)
3 (2,2,5,3,1,0,16,9,12)
4 (2,4,8,0,3,0,15,9,9)
5 (2,2,2,0,1,0,15,14,14)
6 (2,3,2,1,0,0,19,13,10)
7 (0,7,0,4,1,0,15,16,7)
8 (1,6,0,3,3,1,13,19,4)
9 (1,1,0,4,6,3,10,21,4)
10 (1,2,0,4,9,4,6,22,2)
11 (0,3,0,4,15,3,7,16,2)
12 (0,6,0,3,16,2,10,13,0)
13 (0,5,1,6,15,3,14,6,0)
14 (0,4,0,7,19,1,13,4,2)

Table A.6: Histograms over the settings for convolutional layer 1 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (17,18) (15,6,14) (14,21) (17,18) (7,7,4,11,6)
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# activation pooling size_x size_y masks

1 (17,16) (13,9,11) (14,19) (14,19) (5,6,2,15,5)
2 (17,14) (12,13,6) (13,18) (19,12) (3,3,1,24,0)
3 (12,15) (7,14,6) (14,13) (19,8) (0,3,2,22,0)
4 (15,17) (11,17,4) (17,15) (17,15) (0,0,5,27,0)
5 (13,22) (11,16,8) (22,13) (22,13) (0,0,5,30,0)
6 (18,18) (15,13,8) (18,18) (21,15) (0,0,8,28,0)
7 (18,21) (14,17,8) (13,26) (26,13) (0,0,7,32,0)
8 (13,35) (10,27,11) (15,33) (32,16) (0,1,3,43,1)
9 (11,39) (8,32,10) (11,39) (34,16) (1,0,3,46,0)
10 (4,46) (2,32,16) (12,38) (27,23) (0,0,2,47,1)
11 (4,46) (5,28,17) (9,41) (26,24) (0,0,1,45,4)
12 (4,46) (9,30,11) (7,43) (24,26) (0,1,3,42,4)
13 (8,42) (6,35,9) (8,42) (17,33) (0,1,3,40,6)
14 (2,48) (6,40,4) (7,43) (24,26) (0,0,8,31,11)

Table A.7: Histograms over the settings for convolutional layer 2 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (5,16) (9,3,9) (13,8) (9,12) (5,4,3,6,3)
1 (5,7) (3,4,5) (5,7) (5,7) (2,0,3,6,1)
2 (0,5) (0,5,0) (0,5) (0,5) (0,0,0,5,0)
3 (0,4) (0,4,0) (0,4) (0,4) (0,0,0,4,0)
4 (1,4) (0,5,0) (0,5) (0,5) (0,0,0,5,0)
5 (0,1) (0,1,0) (0,1) (0,1) (0,0,1,0,0)
6 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
7 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
8 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
9 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
10 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
11 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
12 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
13 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
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# activation pooling size_x size_y masks

14 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)

Table A.8: Histograms over the settings for the fully connected layer in every genera-
tion. Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The layer column
lists the histograms of the size in every possible layer.

# activation layer

0 (18,32) (2,1,4,3,2,3,4,4,3,2,1,1,3,2,0,3,0,3,2)
(4,1,2,2,1,0,1,4,2,1,1,3,2,2,1,2,0,2,2)
(1,2,1,4,1,2,2,2,0,1,2,0,1,2,2,0,0,2,1)
(0,0,1,1,2,1,0,1,0,1,0,0,0,0,0,1,2,1,0)

1 (17,33) (3,1,4,5,3,3,2,3,1,1,2,2,2,7,0,2,1,3,4)
(5,1,5,3,2,0,0,6,0,1,1,5,3,4,0,1,0,2,2)
(2,2,1,7,3,2,2,4,0,1,2,0,0,2,0,0,0,2,5)
(0,0,1,1,1,3,0,1,0,1,0,0,0,1,0,0,1,0,0)

2 (11,39) (1,0,7,3,0,4,1,6,2,1,7,1,1,8,0,1,2,1,4)
(3,2,7,1,1,0,0,5,0,0,0,1,4,8,0,0,0,2,2)
(0,2,1,8,1,4,1,4,0,0,0,0,0,7,0,0,0,3,3)
(1,0,0,0,0,6,0,2,0,2,0,0,0,2,0,0,0,0,0)

3 (5,45) (0,0,6,0,0,4,1,9,2,2,7,3,1,9,0,3,0,0,3)
(0,3,7,0,0,0,0,5,0,0,0,0,3,10,1,0,0,2,0)
(0,2,2,6,0,4,1,4,0,0,0,0,1,8,0,0,0,3,0)
(0,0,0,0,0,10,0,1,0,2,0,0,0,0,0,0,0,0,0)

4 (3,47) (0,0,6,1,0,7,0,5,3,2,9,1,0,10,0,1,0,1,4)
(0,1,5,0,0,0,0,5,0,0,1,0,4,15,3,0,0,3,1)
(0,3,0,7,0,5,0,8,0,0,0,0,1,10,0,0,1,3,0)
(0,0,0,0,0,10,0,0,0,3,0,0,0,0,0,0,0,0,0)

5 (2,48) (0,0,1,1,0,5,1,3,3,1,20,1,0,6,0,2,1,0,5)
(0,2,2,0,1,0,1,4,0,0,1,0,5,23,1,0,0,6,0)
(0,2,0,4,1,2,0,5,1,0,1,0,3,21,0,0,1,4,1)
(0,0,0,0,0,22,0,0,0,2,0,0,1,0,0,0,0,0,0)

6 (1,49) (0,0,0,1,0,2,4,2,3,1,20,1,0,7,0,1,0,0,8)
(0,1,1,0,0,0,1,2,0,0,1,1,6,23,2,0,1,8,0)
(0,2,0,6,1,1,1,3,0,0,1,0,1,22,0,0,0,8,1)
(0,0,1,0,0,17,1,0,0,2,0,2,1,0,0,0,0,0,1)

7 (1,49) (0,0,0,0,0,1,1,2,4,0,20,0,0,11,0,1,0,0,10)
(0,0,0,1,0,0,0,0,0,1,2,0,7,23,3,0,1,12,0)
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# activation layer

(0,4,2,9,0,2,0,1,0,0,0,0,1,20,0,0,0,11,0)
(0,0,2,0,0,15,0,0,0,1,0,3,2,1,0,0,1,0,0)

8 (2,48) (0,0,0,0,0,0,1,1,1,0,29,0,0,10,0,0,0,0,8)
(0,1,0,1,0,0,1,1,0,3,0,0,5,29,1,0,1,7,0)
(1,1,1,8,0,1,0,0,0,0,0,0,0,29,0,0,0,9,0)
(0,1,0,0,0,26,0,0,0,0,0,3,0,1,0,0,0,0,0)

9 (1,49) (0,0,0,0,0,0,1,0,0,1,28,0,0,13,0,0,0,0,7)
(0,1,0,1,0,0,0,2,0,7,1,0,1,27,0,0,1,9,0)
(0,0,0,9,0,2,0,0,0,0,0,0,1,30,0,0,0,8,0)
(0,1,0,0,0,27,0,0,0,0,0,1,0,0,0,0,0,0,0)

10 (4,46) (0,0,0,0,0,2,1,0,0,0,25,0,0,12,0,1,0,0,9)
(0,3,0,0,0,0,0,3,0,6,3,0,2,24,0,0,1,8,0)
(0,0,0,4,0,2,0,0,1,0,1,0,3,28,3,0,0,8,0)
(0,0,0,0,0,25,0,0,1,0,0,1,0,1,0,1,0,0,0)

11 (0,50) (0,0,0,0,0,0,2,0,0,0,18,0,0,11,0,1,0,0,18)
(0,1,0,0,0,0,0,5,0,9,3,0,4,19,0,0,0,9,0)
(0,0,0,3,0,2,0,0,2,0,1,0,5,19,3,0,0,15,0)
(0,0,0,0,0,16,0,0,2,0,0,0,0,1,1,2,0,0,0)

12 (2,48) (1,0,0,0,0,0,2,0,0,0,15,1,0,6,0,1,0,1,23)
(0,0,0,0,0,0,0,9,0,9,4,0,4,13,0,1,1,9,0)
(0,0,0,1,0,2,0,0,4,0,2,0,4,18,2,0,0,16,1)
(0,0,0,0,0,13,0,0,4,0,0,0,0,0,4,0,0,0,0)

13 (1,49) (1,0,0,0,0,0,1,0,0,0,13,1,0,4,0,1,0,0,29)
(0,0,0,1,0,1,0,7,1,9,1,0,6,9,0,3,1,10,1)
(0,0,0,0,1,0,1,0,6,0,0,1,4,18,5,0,0,14,0)
(0,0,0,0,0,12,0,0,3,0,0,0,0,0,5,0,0,0,0)

14 (1,49) (0,1,0,1,0,0,0,1,0,0,8,3,0,8,0,1,1,1,25)
(0,0,0,1,0,0,0,8,1,11,1,0,4,7,0,4,2,11,0)
(0,0,0,0,0,0,0,0,4,1,0,0,9,15,6,1,0,14,0)
(0,1,0,0,0,5,0,0,3,0,0,0,0,0,6,0,0,0,0)

A.3 Detailed results of experiment 3
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Table A.9: Histograms over the sample size in every generation. Column ‘#’ shows
the number of the generation. Column ‘sample size’ lists the histograms. The left-most
value corresponds to the number of networks having the lowest sample size. The right-
most value to the networks having the highest sample size.

# sample size

0 (6,6,4,6,5,8,2,7,6)
1 (7,5,0,4,6,10,7,8,3)
2 (6,8,1,6,2,8,4,6,9)
3 (3,6,2,7,1,7,5,11,8)
4 (5,8,1,11,1,2,8,8,6)
5 (3,7,0,18,1,2,7,7,5)
6 (2,8,0,19,0,1,7,6,7)
7 (0,7,2,25,3,1,4,5,3)
8 (0,4,1,26,4,3,3,5,4)
9 (0,3,4,24,6,1,2,6,4)
10 (0,1,6,22,0,3,1,13,4)
11 (0,1,8,13,1,3,1,18,5)
12 (0,2,8,15,1,3,1,16,4)
13 (1,3,6,21,2,4,0,11,2)
14 (1,0,6,24,2,6,0,10,1)

Table A.10: Histograms over the settings for convolutional layer 1 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (14,20) (10,13,11) (19,15) (19,15) (4,8,6,10,6)
1 (11,14) (8,12,5) (12,13) (19,6) (1,8,4,7,5)
2 (7,16) (5,12,6) (10,13) (16,7) (3,4,4,7,5)
3 (8,18) (7,12,7) (12,14) (20,6) (0,6,7,6,7)
4 (2,31) (9,22,2) (9,24) (20,13) (0,4,11,2,16)
5 (2,43) (3,38,4) (8,37) (18,27) (1,3,20,5,16)
6 (4,46) (3,44,3) (9,41) (23,27) (0,2,22,6,20)
7 (7,43) (1,46,3) (8,42) (24,26) (1,1,21,3,24)
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# activation pooling size_x size_y masks

8 (6,44) (3,43,4) (5,45) (22,28) (0,1,13,5,31)
9 (5,45) (4,45,1) (7,43) (28,22) (1,1,17,4,27)
10 (6,44) (4,46,0) (7,43) (25,25) (0,3,10,7,30)
11 (2,48) (5,45,0) (7,43) (26,24) (0,1,17,9,23)
12 (1,49) (5,44,1) (10,40) (25,25) (0,0,18,8,24)
13 (3,47) (2,47,1) (15,35) (17,33) (2,2,8,9,29)
14 (3,47) (3,46,1) (12,38) (14,36) (0,1,5,14,30)

Table A.11: Histograms over the settings for convolutional layer 2 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (6,14) (10,7,3) (11,9) (8,12) (3,3,5,2,7)
1 (0,15) (11,3,1) (8,7) (11,4) (0,1,3,2,9)
2 (0,13) (4,7,2) (6,7) (9,4) (0,0,4,3,6)
3 (0,12) (1,11,0) (11,1) (12,0) (0,0,2,0,10)
4 (1,8) (2,7,0) (6,3) (8,1) (0,0,2,0,7)
5 (0,6) (1,5,0) (1,5) (6,0) (0,0,5,0,1)
6 (0,7) (0,7,0) (2,5) (7,0) (0,0,7,0,0)
7 (0,3) (0,3,0) (1,2) (3,0) (0,0,3,0,0)
8 (0,2) (0,2,0) (0,2) (2,0) (0,0,2,0,0)
9 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
10 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
11 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
12 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
13 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
14 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
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Table A.12: Histograms over the settings for the fully connected layer in every genera-
tion. Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The layer column
lists the histograms of the size in every possible layer.

# activation layer

0 (28,22) (6,1,3,1,1,0,5,0,4,4,2,2,1,1,2,2,3,2,0)
(4,0,1,0,2,1,1,0,2,1,3,1,1,1,2,3,1,0,4)
(1,0,1,0,0,2,0,2,1,1,1,0,0,1,3,0,1,3,1)
(0,0,0,1,2,2,0,1,1,0,0,0,0,0,0,0,1,0,1)

1 (19,31) (3,0,0,1,0,0,5,0,4,3,5,2,4,1,2,4,4,5,0)
(2,0,0,0,8,1,1,0,4,2,1,1,1,2,1,6,2,0,5)
(1,0,1,0,1,5,0,1,1,2,1,0,0,2,3,0,0,8,0)
(0,0,0,1,4,3,0,1,4,0,0,0,0,0,0,0,4,0,4)

2 (14,36) (1,0,0,0,1,0,5,0,4,7,6,2,2,1,1,5,6,4,0)
(2,0,0,0,9,1,0,0,5,3,0,1,5,4,1,6,4,0,2)
(0,0,3,1,2,5,1,1,0,3,1,0,0,4,5,0,0,6,1)
(0,0,0,1,4,4,1,0,4,0,0,0,0,0,0,0,2,2,5)

3 (6,44) (0,0,0,0,0,0,7,1,2,3,10,1,7,1,1,1,5,11,0)
(1,0,0,0,11,2,0,0,8,0,0,2,3,3,0,8,5,0,6)
(0,0,2,1,3,9,3,1,0,1,2,0,0,1,1,0,0,13,5)
(0,0,0,2,7,1,1,1,8,1,0,0,0,0,0,1,7,3,7)

4 (1,49) (1,0,0,0,0,0,11,0,0,3,5,1,7,1,0,0,7,14,0)
(2,0,0,0,12,0,0,0,3,0,0,3,1,2,0,12,8,0,7)
(0,0,3,0,3,4,6,1,0,2,0,0,0,1,1,0,1,14,6)
(0,0,0,0,2,0,0,1,14,2,0,0,0,1,0,0,8,2,10)

5 (2,48) (0,0,0,0,1,0,13,0,0,1,3,1,10,1,0,0,6,14,0)
(2,0,0,1,12,0,0,1,4,1,0,1,1,0,0,11,6,0,10)
(0,0,4,0,1,3,7,0,0,4,0,0,0,1,1,1,1,16,5)
(0,0,0,0,3,1,0,1,9,2,1,0,0,1,0,0,11,2,12)

6 (1,49) (0,0,0,0,1,0,8,0,1,2,3,5,8,2,0,0,5,15,0)
(3,0,0,1,13,1,0,0,5,2,0,1,0,0,0,10,5,0,9)
(0,0,6,0,0,4,7,0,0,1,0,0,0,2,0,4,0,16,6)
(0,0,1,0,0,1,0,0,11,4,0,0,0,1,1,0,11,8,8)

7 (1,49) (1,0,0,0,0,1,9,0,0,1,6,5,3,2,1,0,5,15,1)
(3,0,0,1,13,1,0,0,5,2,0,1,0,0,0,11,3,0,10)
(1,1,5,0,0,6,8,0,0,2,0,0,0,1,0,5,0,14,5)
(0,0,1,0,1,2,0,0,9,6,0,0,0,2,2,0,8,9,8)

8 (2,48) (0,0,0,0,1,0,3,0,1,0,7,8,4,2,2,0,2,18,2)
(9,0,1,1,12,2,0,0,7,2,0,2,0,0,1,6,1,0,6)
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# activation layer

(2,0,5,0,0,6,3,0,0,0,1,0,0,2,0,8,0,15,8)
(0,0,0,1,1,0,0,0,9,6,1,1,0,3,2,0,7,14,5)

9 (1,49) (0,0,0,0,0,0,3,0,0,0,10,16,0,2,1,0,1,14,3)
(6,0,3,1,11,1,1,0,14,0,0,1,1,0,0,3,0,0,8)
(0,0,5,0,0,8,1,0,0,0,3,2,0,2,1,15,0,10,3)
(0,0,0,1,2,0,0,0,8,6,4,1,1,1,0,0,2,21,3)

10 (0,50) (0,0,0,0,0,0,3,0,1,0,9,18,0,1,0,0,1,15,2)
(7,1,1,3,8,0,1,1,17,0,0,0,1,0,0,3,0,0,7)
(1,0,4,0,0,8,1,0,0,0,2,1,0,1,5,13,0,13,1)
(1,0,1,1,1,0,0,2,4,5,7,1,0,1,0,0,0,25,1)

11 (4,46) (0,2,0,1,0,0,7,0,2,0,6,13,0,0,1,0,2,13,3)
(7,1,3,2,8,0,3,0,14,2,0,0,1,0,0,4,0,0,5)
(0,0,8,0,0,8,1,0,0,0,4,2,0,1,4,10,0,12,0)
(2,0,1,3,2,2,0,1,5,3,4,0,0,0,0,1,0,24,2)

12 (2,48) (0,1,0,2,1,1,6,0,3,0,5,10,0,0,0,0,3,16,2)
(13,0,6,2,4,0,4,1,11,1,0,1,2,1,0,1,0,0,3)
(0,0,7,0,0,6,0,0,0,0,5,3,0,1,1,12,0,15,0)
(1,0,1,1,2,1,0,1,3,3,3,0,0,0,0,0,0,30,4)

13 (2,48) (1,1,0,1,0,2,2,1,1,0,5,15,0,0,0,0,9,12,0)
(6,0,3,2,0,0,6,0,14,1,0,1,7,1,0,2,1,0,6)
(0,0,4,0,0,5,0,0,0,0,0,6,0,3,2,13,1,16,0)
(1,0,0,2,1,2,0,0,0,2,9,0,0,0,0,0,0,33,0)

14 (3,47) (0,0,0,1,0,0,1,0,0,0,7,12,0,0,0,1,20,8,0)
(2,0,6,2,0,0,5,0,16,0,1,2,9,0,2,1,0,0,4)
(0,0,4,0,0,9,0,0,0,0,0,8,0,4,0,16,1,8,0)
(0,0,0,5,1,4,1,0,0,3,7,0,0,0,0,0,0,29,0)

A.4 Detailed results of experiment 4

Table A.13: Histograms over the sample size in every generation. Column ‘#’ shows
the number of the generation. Column ‘sample size’ lists the histograms. The left-most
value corresponds to the number of networks having the lowest sample size. The right-
most value to the networks having the highest sample size.

# sample size

0 (5,5,6,3,3,10,5,4,9)
1 (8,3,7,0,6,5,8,1,12)
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# sample size

2 (6,7,10,0,5,1,6,4,11)
3 (3,10,5,1,7,2,8,3,11)
4 (3,8,8,4,4,2,6,4,11)
5 (2,5,12,5,6,5,5,2,8)
6 (2,7,12,9,1,5,8,1,5)
7 (0,7,17,11,0,2,7,0,6)
8 (0,12,14,9,1,4,9,1,0)
9 (0,10,14,9,1,5,8,3,0)
10 (1,11,10,7,0,4,14,3,0)
11 (1,8,8,11,0,8,10,4,0)
12 (1,7,7,11,0,9,12,2,1)
13 (1,6,11,8,0,7,11,5,1)
14 (0,2,4,15,1,7,8,13,0)

Table A.14: Histograms over the settings for convolutional layer 1 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (18,22) (14,13,13) (20,20) (20,20) (9,9,9,6,7)
1 (11,24) (13,8,14) (17,18) (20,15) (7,8,7,4,9)
2 (11,29) (18,13,9) (16,24) (19,21) (5,6,12,7,10)
3 (7,31) (14,8,16) (14,24) (21,17) (1,4,9,6,18)
4 (10,27) (15,10,12) (11,26) (21,16) (1,2,11,5,18)
5 (9,29) (14,12,12) (12,26) (21,17) (0,1,10,4,23)
6 (9,30) (15,14,10) (13,26) (20,19) (0,0,11,1,27)
7 (6,37) (20,13,10) (8,35) (27,16) (1,1,8,0,33)
8 (9,38) (17,25,5) (8,39) (29,18) (0,0,11,1,35)
9 (13,36) (13,32,4) (6,43) (19,30) (2,0,9,1,37)
10 (18,30) (11,34,3) (9,39) (17,31) (2,0,8,1,37)
11 (12,37) (12,35,2) (7,42) (21,28) (1,1,10,1,36)
12 (11,39) (17,31,2) (9,41) (24,26) (1,1,11,3,34)
13 (2,48) (18,27,5) (9,41) (23,27) (1,1,5,2,41)
14 (5,45) (21,27,2) (13,37) (24,26) (2,0,6,4,38)
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Table A.15: Histograms over the settings for convolutional layer 2 in every generation.
Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The histogram values
in the ‘pooling’ column correspond to the pooling functions in the order (none, max,
avg). Columns ‘size_x’ and ‘size_y’ show the size of the convolution kernels in each
direction, the left value corresponds to size 2, the right to size 3. The last column
‘masks’ lists the histograms over the number of convolution kernels in this layer.

# activation pooling size_x size_y masks

0 (7,9) (7,6,3) (9,7) (8,8) (1,4,6,3,2)
1 (3,9) (5,6,1) (5,7) (7,5) (0,3,4,1,4)
2 (3,8) (6,4,1) (7,4) (3,8) (2,0,6,1,2)
3 (1,6) (2,5,0) (4,3) (2,5) (0,0,4,0,3)
4 (2,2) (2,1,1) (3,1) (1,3) (0,0,3,0,1)
5 (0,1) (0,1,0) (0,1) (0,1) (0,0,0,0,1)
6 (0,3) (0,3,0) (1,2) (0,3) (0,0,0,0,3)
7 (0,2) (0,2,0) (0,2) (0,2) (0,0,0,0,2)
8 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
9 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
10 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
11 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
12 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
13 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)
14 (0,0) (0,0,0) (0,0) (0,0) (0,0,0,0,0)

Table A.16: Histograms over the settings for the fully connected layer in every genera-
tion. Column ‘#’ shows the number of the generation. The left values in the ‘activation’
column corresponds to the tanh activation, the right one to ‘relu’. The layer column
lists the histograms of the size in every possible layer.

# activation layer

0 (28,22) (6,1,3,1,1,0,5,0,4,4,2,2,1,1,2,2,3,2,0)
(4,0,1,0,2,1,1,0,2,1,3,1,1,1,2,3,1,0,4)
(1,0,1,0,0,2,0,2,1,1,1,0,0,1,3,0,1,3,1)
(0,0,0,1,2,2,0,1,1,0,0,0,0,0,0,0,1,0,1)

1 (19,31) (3,0,0,1,0,0,5,0,4,3,5,2,4,1,2,4,4,5,0)
(2,0,0,0,8,1,1,0,4,2,1,1,1,2,1,6,2,0,5)
(1,0,1,0,1,5,0,1,1,2,1,0,0,2,3,0,0,8,0)
(0,0,0,1,4,3,0,1,4,0,0,0,0,0,0,0,4,0,4)
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# activation layer

2 (14,36) (1,0,0,0,1,0,5,0,4,7,6,2,2,1,1,5,6,4,0)
(2,0,0,0,9,1,0,0,5,3,0,1,5,4,1,6,4,0,2)
(0,0,3,1,2,5,1,1,0,3,1,0,0,4,5,0,0,6,1)
(0,0,0,1,4,4,1,0,4,0,0,0,0,0,0,0,2,2,5)

3 (6,44) (0,0,0,0,0,0,7,1,2,3,10,1,7,1,1,1,5,11,0)
(1,0,0,0,11,2,0,0,8,0,0,2,3,3,0,8,5,0,6)
(0,0,2,1,3,9,3,1,0,1,2,0,0,1,1,0,0,13,5)
(0,0,0,2,7,1,1,1,8,1,0,0,0,0,0,1,7,3,7)

4 (1,49) (1,0,0,0,0,0,11,0,0,3,5,1,7,1,0,0,7,14,0)
(2,0,0,0,12,0,0,0,3,0,0,3,1,2,0,12,8,0,7)
(0,0,3,0,3,4,6,1,0,2,0,0,0,1,1,0,1,14,6)
(0,0,0,0,2,0,0,1,14,2,0,0,0,1,0,0,8,2,10)

5 (2,48) (0,0,0,0,1,0,13,0,0,1,3,1,10,1,0,0,6,14,0)
(2,0,0,1,12,0,0,1,4,1,0,1,1,0,0,11,6,0,10)
(0,0,4,0,1,3,7,0,0,4,0,0,0,1,1,1,1,16,5)
(0,0,0,0,3,1,0,1,9,2,1,0,0,1,0,0,11,2,12)

6 (1,49) (0,0,0,0,1,0,8,0,1,2,3,5,8,2,0,0,5,15,0)
(3,0,0,1,13,1,0,0,5,2,0,1,0,0,0,10,5,0,9)
(0,0,6,0,0,4,7,0,0,1,0,0,0,2,0,4,0,16,6)
(0,0,1,0,0,1,0,0,11,4,0,0,0,1,1,0,11,8,8)

7 (1,49) (1,0,0,0,0,1,9,0,0,1,6,5,3,2,1,0,5,15,1)
(3,0,0,1,13,1,0,0,5,2,0,1,0,0,0,11,3,0,10)
(1,1,5,0,0,6,8,0,0,2,0,0,0,1,0,5,0,14,5)
(0,0,1,0,1,2,0,0,9,6,0,0,0,2,2,0,8,9,8)

8 (2,48) (0,0,0,0,1,0,3,0,1,0,7,8,4,2,2,0,2,18,2)
(9,0,1,1,12,2,0,0,7,2,0,2,0,0,1,6,1,0,6)
(2,0,5,0,0,6,3,0,0,0,1,0,0,2,0,8,0,15,8)
(0,0,0,1,1,0,0,0,9,6,1,1,0,3,2,0,7,14,5)

9 (1,49) (0,0,0,0,0,0,3,0,0,0,10,16,0,2,1,0,1,14,3)
(6,0,3,1,11,1,1,0,14,0,0,1,1,0,0,3,0,0,8)
(0,0,5,0,0,8,1,0,0,0,3,2,0,2,1,15,0,10,3)
(0,0,0,1,2,0,0,0,8,6,4,1,1,1,0,0,2,21,3)

10 (0,50) (0,0,0,0,0,0,3,0,1,0,9,18,0,1,0,0,1,15,2)
(7,1,1,3,8,0,1,1,17,0,0,0,1,0,0,3,0,0,7)
(1,0,4,0,0,8,1,0,0,0,2,1,0,1,5,13,0,13,1)
(1,0,1,1,1,0,0,2,4,5,7,1,0,1,0,0,0,25,1)

11 (4,46) (0,2,0,1,0,0,7,0,2,0,6,13,0,0,1,0,2,13,3)
(7,1,3,2,8,0,3,0,14,2,0,0,1,0,0,4,0,0,5)
(0,0,8,0,0,8,1,0,0,0,4,2,0,1,4,10,0,12,0)
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# activation layer

(2,0,1,3,2,2,0,1,5,3,4,0,0,0,0,1,0,24,2)
12 (2,48) (0,1,0,2,1,1,6,0,3,0,5,10,0,0,0,0,3,16,2)

(13,0,6,2,4,0,4,1,11,1,0,1,2,1,0,1,0,0,3)
(0,0,7,0,0,6,0,0,0,0,5,3,0,1,1,12,0,15,0)
(1,0,1,1,2,1,0,1,3,3,3,0,0,0,0,0,0,30,4)

13 (2,48) (1,1,0,1,0,2,2,1,1,0,5,15,0,0,0,0,9,12,0)
(6,0,3,2,0,0,6,0,14,1,0,1,7,1,0,2,1,0,6)
(0,0,4,0,0,5,0,0,0,0,0,6,0,3,2,13,1,16,0)
(1,0,0,2,1,2,0,0,0,2,9,0,0,0,0,0,0,33,0)

14 (3,47) (0,0,0,1,0,0,1,0,0,0,7,12,0,0,0,1,20,8,0)
(2,0,6,2,0,0,5,0,16,0,1,2,9,0,2,1,0,0,4)
(0,0,4,0,0,9,0,0,0,0,0,8,0,4,0,16,1,8,0)
(0,0,0,5,1,4,1,0,0,3,7,0,0,0,0,0,0,29,0)


	List of Figures
	List of Tables
	Introduction
	The RoboCup
	The NAO Robotic System
	The Standard Platform League (SPL)
	Motivation
	Overview of existing Approaches
	Nao-Team HTWK
	B-Human
	Bembelbots

	Goals
	Problem Overview and Thesis Structure

	Prerequisites
	Basic Terms
	Metrics
	k-fold cross-validation

	Used Software
	HULKs NAO Framework
	HULKs OFA
	Tensorflow

	Genetic algorithm
	Selection
	Mutation
	Reproduction

	Artificial Neural Networks
	Neurons
	Activation functions

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Normalization layer


	Data Aquisition
	Candidate Generation
	Available Data
	Generating Seeds
	Merging seeds to candidates
	Reprojection of found balls
	Saving the candidates

	Labeling
	Data Setup

	Genetic design of CNNs
	CNN Structure
	Search space
	Fitness function
	Classification performance
	Inference complexity
	Resulting fitness function

	Inference on the NAO

	Experiments and Evaluation
	Experiment 1
	Population settings

	Experiment 2
	Population settings

	Experiment 3
	Population settings

	Experiment 4
	Population settings

	Evaluation

	Further Evaluation
	Input Optimization
	Generalization Test

	Conclusion and Outlook
	Conclusion
	Outlook

	Single results of the Networks in the Experiments
	Detailed results of experiment 1
	Detailed results of experiment 2
	Detailed results of experiment 3
	Detailed results of experiment 4


