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Abstract. Image segmentation is essential in robotics for tasks like self-
localization and object detection. In the RoboCup Standard Platform
League (SPL), where humanoid Nao robots play soccer autonomously,
accurate field segmentation supports key functions but must run on lim-
ited hardware, making the design of lightweight yet accurate segmenta-
tion methods important.

In this work, we present a comparative study of lightweight segmenta-
tion methods in the context of RoboCup SPL. Our focus is on minimizing
manual tuning while maximizing accuracy under real-world conditions.
We propose an optimization pipeline to efficiently explore several clas-
sifiers and features using a zeroth-order optimization framework. The
pipeline evaluates combinations of color channels, texture descriptors,
and classifiers with the goal of achieving a high F> score while keeping
computational complexity low.

Our results show that the Nystrom approximation of the Radial Basis
Function (RBF) kernel achieves the highest accuracy, but is computa-
tionally more expensive. In contrast, the Decision Tree (DT) offers a
strong balance between accuracy and efficiency, using fewer features and
a simpler texture method to achieve reliable performance.
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1 Introduction

Image segmentation is a fundamental task in computer vision to classify each
pixel of an image into meaningful categories. While recent advances in deep
learning have led to highly accurate segmentation methods, such approaches
are typically computationally intensive and unsuitable for real-time, resource-
constrained systems.

One such example is the Nao robot used in the RoboCup Standard Platform
League (SPL), a research competition where university teams program humanoid
robots to play soccer autonomously. During a soccer game, the robots must
accurately navigate the field and interact with teammates, opponents, and the
ball. To perceive their surroundings, Nao robots are equipped with two cameras
integrated into the head. These images are commonly used for self-localization
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(a) RGB image from Nao’s top camera (b) Manual segmentation: field (green),
(RoboCup 2019). not field (blue).

Fig. 1: Example input image and ground truth segmentation used for training.

and object detection tasks, such as identifying the ball, robots, humans, or goal
posts.

To reduce the computational complexity of these perception tasks, one strat-
egy is to pre-process the raw images into segmentation masks that highlight only
the relevant visual structures on the field. Key cues in this context include the
green artificial turf and the white line markings. A practical simplification is
to segment the image into two classes: field and not field, where the latter one
includes lines, robots, the ball, and background elements. An example of such a
segmentation is shown in Figure 1.

However, accurately segmenting the field is challenging due to variations
in environmental conditions. Lighting may differ significantly in brightness and
color temperature. Indoor fields have artificial lighting, but when placed next
to windows, they are affected by sunlight. In the latter case, changing daylight
conditions casts strong shadows or creates reflections during the match. Addi-
tionally, the visibility of line markings may vary depending on whether they are
taped or spray-painted. Even the turf itself may have inconsistencies in color
or texture. These factors highlight the need for segmentation methods that are
robust to environmental variability.

Conventional methods in the RoboCup SPL rely on manually tuned lookup
tables or histogram-thresholding on selected color channels [1]. One notable
method [6] introduced dynamic adaptation of thresholds based on lighting con-
ditions, improving robustness during games. More advanced techniques, such
as fuzzy C-means with Radial Basis Function (RBF) Support Vector Machines
(SVMs) [13] exist but were developed for the RoboCup Middle Size League,
where greater computational resources are available.

Beyond the RoboCup domain, segmentation methods leverage clustering al-
gorithms, neural networks, or engineered features [10]. However, applying such
approaches on the Nao robot requires balancing accuracy with computational
efficiency due to strict runtime and hardware constraints.
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In this work, we address this trade-off by proposing an optimization pipeline
that efficiently explores combinations of color and texture features for various
lightweight classifiers. In Section 2, we review common segmentation pipelines
and summarize relevant approaches in the RoboCup domain. Section 3 intro-
duces the classifiers and features selected for evaluation. Our optimization strat-
egy is presented in Section 4, followed by a discussion of the experimental results
in Section 5, where we highlight the most effective segmentation pipelines for de-
ployment on resource-constrained platforms.

2 Related Work

Image segmentation is a central topic in computer vision with a wide va-
riety of methods that differ in complexity, computational demands, and target
applications. Typically, segmentation pipelines involve four stages: image pre-
processing, feature extraction, segmentation, and classification [10].

In real-world environments, image pre-processing is essential to mitigate
noise, illumination variability, and low contrast. Common techniques include
contrast enhancement, normalization, resizing, and denoising, which collectively
help improve the quality of subsequent segmentation [10].

Next, feature extraction plays a critical role in segmentation and depends
on the domain and input modality. Based on the comprehensive study by Wang
et al. [2], features are categorized as morphological, spectral, visual texture, or
spatial context features. They highlight that color is a straightforward and nat-
ural choice, as color features are directly derived from the input image, leading
many approaches to incorporate various color spaces into their feature vectors.
Additionally, the selection of specific color channels often depends on the seg-
mentation method employed.

While RGB is the standard format for image display, the coupling of lu-
minance and chrominance often makes it suboptimal for segmentation tasks,
particularly under varying lighting conditions. Alternatives, such as HSV, HSI,
YCrCb, YUV, L*a*b*, and L*u*v*, have shown improved robustness to lighting
variations [2].

Beyond basic color channels, more advanced color descriptors have been pro-
posed. For instance, Excess Green (ExG) indices offer improved segmentation
under varying illumination by combining color channels into one index [3]. Look-
ing beyond just the raw color values, gradient-based techniques like the Canny
edge detector [13] and Histogram of Oriented Gradients (HoG) [9] capture spatial
edge information. Binary descriptors such as Local Binary Patterns (LBPs) or
Binary Robust Independent Elementary Features (BRIEF) are simple methods
to capture basic texture information [4]. Gabor filters [12] provide additional con-
text by incorporating frequency and pattern-based information. More recently,
features learned via deep convolutional neural networks, such as ResNet18, have
demonstrated strong performance in segmentation tasks [7].
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Next to supervised segmentation methods, such as SVMs or Decision Trees
(DTs), unsupervised methods like Fuzzy C-means are also used widely for its
simplicity and ability to model overlapping classes [2].

Several works in the RoboCup community have explored handcrafted feature-
based segmentation pipelines tailored for the Nao robot system. Basler [1] ex-
plores different color spaces for histogram-thresholding. Concluding that the
green chromaticity channel g combined with pixel brightness I perform best, with
white balancing further enhancing the results. While Qian and Lee [6] similarly
applied histogram-thresholding to the green chromaticity channel, they adapt
the threshold dynamically in response to lighting changes and head movements,
thereby improving segmentation robustness during gameplay. Zhang et al. [13]
propose a segmentation approach that combines edge features and statistical
color descriptors extracted from multiple color spaces. These features are clus-
tered using Fuzzy C-Means and then classified using a RBF SVM. Their method
targets the Middle Size League and assumes access to more powerful computa-
tional resources, making it less directly applicable to the real-time, low-resource
constraints of the RoboCup SPL.

While numerous segmentation techniques exist, few address the unique con-
straints of real-time embedded systems. This work fills that gap by proposing a
modular evaluation framework for lightweight image segmentation on resource-
constrained hardware. We assess combinations of feature extractors and classifi-
cation methods in terms of accuracy, robustness, and computational cost, using
data collected from RoboCup SPL competitions.

3 Explored Methods and Features

In this section, we present the classifiers, color spaces, and texture feature ex-
traction methods that we selected based on their suitability for real-time and
resource-constrained systems. These components form the search space explored
in our optimization pipeline. Additionally, we briefly describe the Nao robot,
focusing on its processing capabilities and camera system, to highlight the hard-
ware limitations that directly influence method selection.

3.1 Classification

We represent the image segmentation as a binary classification problem where
each pixel is labeled as either field (true/1) or not field (false/0). A vector x
from a given feature space X represents a single pixel with d € N features. Each
feature vector has a corresponding ground truth label y from a label space ),
which in our case is {0,1}. A model M : X — Y maps from the feature to the
label space and predicts a label § = M(x) for a given x.

Histogram-Thresholding: For each feature i € {1,...,d}, a closed interval
[tgl),tél)] is given, and the collection of all such intervals forms the set 7". The
classification is then defined by the indicator function § = 17 (z), which returns
1 if x is within all ranges in 7" and otherwise 0.
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Decision Tree: With a binary tree structure, each internal node compares
a feature to a given threshold with a maximum tree height h € N leading to the
predicted label 3.

Linear Support Vector Machine: For SVMs, classification is based on
the sign of a decision function f(x) as shown in the following equation:

1 if >0
g= 1L 0020 Gy ey LR weRbeR M)
0 otherwise

Here, w denotes the weight vector and b the bias term. In the linear case,
the decision function takes the form f(x) = w'x + b.

Kernel Method with SVMs: The formulation of linear SVMs above
assumes that the data is linearly separable. When this assumption does not
hold, the so-called kernel trick (8] is applied. Instead of explicitly mapping the
data to a higher-dimensional space, a kernel function & : X x X — R with
k(x,x') = (¢(x), ¢(x')) computes inner products in a feature space V induced
by the feature map ¢ : X — V. This removes the need of computing the expen-
sive feature map explicitly and only the kernel function k£ needs to be evaluated,
which is typically more computationally efficient. However, kernel methods suffer
from poor scalability in large datasets.

To mitigate this, various kernel approximation techniques, such as the Nys-
trom method [11], approximate the high-dimensional feature map ¢ with a lower-
dimensional representation. In the case of the Nystrém method, the complexity
to compute the kernel function reduces from O(n?) to O(m?n), where m < n is
the dimensionality of the approximated feature space.

3.2 Color Spaces

Various color spaces are used to represent color information, each offering differ-
ent advantages depending on the task. The most common ones found in Com-
puter Vision (CV) are RGB, rgbl, HSV, YCrCb, and L*a*b*, where rgbl is
the normalized version of the RGB color space, sometimes also referred to as
RGB* [2]. In all these color spaces apart from RGB, the intensity is decoupled
from the chromaticity. The intensity channels are I, Y, L*, and V. RGB and rgb
describe the colors red, green, and blue, respectively. Cb and b* are the blue-
yellow axis and Cr and a* the red-green axis. H represents the hue and covers
the whole color spectrum and S is the saturation.

3.3 Texture Feature Extraction Methods

While color information is a valuable cue for image segmentation, it is often
insufficient when different object classes exhibit similar color values. To over-
come this limitation and improve classification accuracy, local texture features
are used to provide more context. This section introduces four methods that are
commonly found in CV pipelines, representing a diverse range of approaches:



6 Franziska-Sophie Gottsch

raw spatial sampling, binary encoding, edge orientation histograms, and con-
volutional filter responses. This selection enables a balanced comparison across
simplicity, computational efficiency, and descriptive power.

Texture feature methods are typically defined to be applied to a gray scale
image but are also applicable to images with multiple color channels by apply-
ing the method to each color channel separately. The following focuses on the
application to a single color channel.

Neighboring Pixels: The raw color value of the neighboring pixels around
a center pixel are sampled at radius r and with o equidistant orientations. This
augments the feature vector by o additional features per pixel, capturing local
spatial context.

Local Binary Pattern: This method samples 8 pixel values around a center
pixel with radius r. The intensity of each of these pixels is compared to that of
the center pixel and assigned either a 0 or 1 if the value is smaller or greater,
respectively. The resulting binary pattern is encoded as a single integer, adding
exactly one feature per pixel. This compact representation provides robustness
to illumination changes while remaining computationally efficient.

Histogram of Oriented Gradients: HoG involves computing gradient
magnitudes and orientations within local cells, which are then binned into a
fixed number of orientation bins 0. The dimensionality of the resulting feature
vector depends on the number of bins and the cell configuration. While the per-
pixel complexity remains linear, the computational cost is higher than that of
LBP due to the additional gradient and histogram calculations [4].

Gabor Filters: The impulse response of a Gabor filter is defined by a sinu-
soidal wave and a Gaussian function [5] to capture frequency and orientation-
specific information:

12 2,12 2 /
g(x,y; X, 0,¢,0,7) = exp (—W/> exp (Z ( T;I + ¢)) , (2a)

202

2’ =xcosf+ysinh,y = —xsind + ycosb. (2b)

The parameters in the Gabor function play specific roles: o controls the stan-
dard deviation of the Gaussian envelope and thus the spatial extent of the filter.
0 € [0,27] defines the orientation of the filter, enabling directional sensitivity.
A € [0, 27] determines the wavelength of the sinusoidal component, which sets
the preferred spatial frequency. v € [0, 1] adjusts the spatial aspect ratio, where
smaller values create elongated filters and values closer to 1 approach circular
symmetry. And ¢ € [0, 27] sets the phase offset, influencing the symmetry of the
filter response. Each filter is then convolved with the image, where the number
of filters K, as well as the kernel size k determine the computational cost [10].

3.4 The Nao Robot

The Nao v6 by Aldebaran Robotics is the official standard platform in the SPL
and to be used by all participating teams. Released in 2018, the Nao v6 features
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relatively modest hardware by today’s standards, with an Intel Atom quad-core
1.91 GHz CPU, 4 GB of DDR3 RAM, and a 32 GB SSD. It is equipped with
two head-mounted cameras capable of capturing images at various resolutions
depending on the selected frame rate. The images are recorded in RGB, but then
compressed in a lossy way into YCrCb422 due to hardware limitations.

4 Finding the most efficient Method for Image
Segmentation

Based on the methods described in Section 3, we next discuss the optimization
and training process to find the best method for lightweight image segmentation.
We present our dataset, motivate certain design choices based on the require-
ments given by the Nao robot and the SPL context, and introduce the proposed
optimization pipeline.

4.1 Dataset

Our dataset consist of images captured by the Nao v6 from different teams
and events, leading to a vide variety within the images. Depending on the frame
rate, the Nao can record in different resolutions. In this work, we only consider
a resolution of 640x480 for both the top and bottom camera. The full dataset
contains 1,864,394 images from which 1,374,268 are in the wanted resolution.
Around 70% of the images with a resolution of 640x480 are from the top camera
while the remaining 30% are from the bottom camera. The bottom camera is
tilted downwards to only capture objects directly in front of the robot and thus,
often only shows field, the robots feet, and the ball. The top camera, on the
other hand, is tilted more towards the horizon, also capturing objects further
away, like other robots, more lines, or the goalposts. Thus, the segmentation of
the top camera images is more complex which is why we choose to include more
top camera images in the dataset than bottom camera images.

From this dataset, we manually labeled 601 images. The ground truth is a
segmentation mask with three classes: field, not field, and uncertain. The class not
field is further categorized into lines, robots, goal, and others, e.g., background or
humans. The pixels from the class uncertain are not used for training or testing.
Furthermore, the images are each tagged based on their lighting, field, and line
conditions as shown in Figure 2. Based on these tags, we choose to sample equal
amounts of images from indoor, outdoor, and mixed scenarios. And within these
three scenarios, the appearance of bright light reflections and shadows has been
equalized where possible. Examples of images with their categories are shown in
figure Figure 3. This categorization allows for more precise training and testing
the model under varying conditions.

4.2 Optimization Pipeline
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Fig. 2: Distribution of the train (64%), validation (16%), and test (20%) data
splits.

(a) Indoor, Neither, (b) Outdoor, Shadows, (c¢) Outdoor, Light

Spray-painted (poor), Taped, Consistent Field Reflections, Taped,
Inconsistent Field Color.  Color. Consistent Field Color.

Fig. 3: Examples of images from the dataset with their corresponding categories.

The optimization and training pipeline is implemented in Python due to its
rich ecosystem of libraries for Machine Learning (ML) and CV. We mostly rely on
OpenCV and scikit-image for color space transformations and texture feature
extraction, scikit-learn for classifier training, and Optuna for hyperparameter
optimization.

Initially, only the training and validation dataset is used. For each classifier,
an independent study is initialized to explore the respective hyperparameter
space using a Tree-structured Parzen Estimator (TPE) sampler. This pipeline is
illustrated in Figure 4.

Each optimization trial consists of several steps. First, the sampler selects
the parameters for the current trial. This includes a non-empty subset of color
channels from the full set of color channels. One of these selected channels is
used for the texture feature extraction. A texture feature extraction method is
chosen along with its corresponding parameters (see Section 3.3). The texture
and color features are extracted according to the sampled parameters and form
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Fig. 4: Proposed optimization pipeline.

the feature vectors for each sample. Based on this representation, a classifier is
trained on the training dataset and evaluated on the validation dataset. Based
on this scoring and the number of selected color channels, the TPE sampler
suggests a new configuration to improve the performance. This iterative process
continues until a predefined number of trials are completed.

After identifying the most effective combination of color channels and texture
features for a given classifier, a final tuning phase is performed. In this phase,
classifier-specific hyperparameters are optimized using a grid search with five-
fold cross-validation on the combined training and validation set. The final score
of each classifier is obtained by applying it to the test dataset.

As discussed in Section 2, typical segmentation pipelines include pre-processing
or post-processing steps to enhance the quality of the segmentation mask. While
these steps are effective, they typically require additional computational re-
sources. Due to the limited processing power of the Nao robot, such operations
would violate the real-time constraints. Therefore, we restrict our pipeline to use
only the raw input images and the direct output of the classifier, without any
additional image processing.

4.3 Performance Metrics
To evaluate the performance of the classifier at the end of each optimization

trial, we use the Fg score in Equation (3) with § = 2:

P B +1 _ (1+p% - TP 3)
o B2 - recall ™! + precision™! (1 +2)- TP+ 32 -FN + FP’

This setting prioritizes recall over precision, i.e. false negatives will be pe-
nalized more than false positives. This decision is motivated by the usage of the
segmented images in the line detection of the robot. The line detection algorithm
tries to fit lines through the pixels classified as not field and thus, false negatives,
i.e., pixels that are field but classified as not field, significantly degrade first line
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detection and consequently also localization. This Fy score is used by the TPE
sampler and shall be maximized.

In addition to the Fy score, the TPE sampler also uses the number of se-
lected color channels as an objective. This number shall be minimized to reduce
the need of color space transformation which are computationally expensive,
especially on the Nao.

5 Evaluation

This section first introduces the baseline to which we compare the tuned clas-
sifiers. Next, we present the results of the optimization pipeline described in
Section 4.2. Here, each classifier’s performance is analyzed with respect to two
criteria, segmentation accuracy and its overall computational complexity.

5.1 Histogram-Thresholding as Baseline

To show the influence of the data-driven classifier and the texture feature in
addition to the color features, we chose simple histogram-thresholding as a base-
line. The parameters, i.e., the selected color channels and ranges, were tuned at
the RoboCup 2024 for the specific location. The optimal parameters may vary
from location to location but since we are looking for a solution that works in
all scenarios, we use these parameters on the whole dataset. The results of the
baseline classifier are included in Table 1.

5.2 Overall Performance during Optimization

The Pareto fronts, defined by the two optimization targets, in Figure 5 illustrate
how the TPE sampler explored the trade-off between classification performance
(Fy score) and the number of selected color channels. For all classifiers, a clear
Pareto front emerged, with most recent trials clustering near the front. This
suggests convergence toward optimal solutions, even though a TPE sampling-
based, zeroth-order optimizer cannot guarantee globally optimal results. For each
classifier, we ran the optimization pipeline for 2000 trials. Primarily due to time
constraints, but also because the TPE sampler did not find significantly better
parameters beyond this point.

Notably, the best-performing trials for DT and both kernel approximation
methods (Polynomial and RBF) used only two or three color channels. As more
channels are added, performance decreased, particularly for the kernel approx-
imations. This may be due to the fixed number of components used in the ap-
proximated high-dimensional space. More input features mean that the feature
vector cannot be expanded as much as one with fewer dimensions, weakening
the kernel approximation’s effectiveness.

The Polynomial kernel approximation showed high variance in F5 scores.
Some trials performed well, while others dropped significantly below 80%. In
contrast, the RBF approximation is unusually stable, rarely scoring below 90%.
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Fig.5: The Pareto fronts of each classifier with the trial number [l and
best trials @ found by a TPE sampler during the optimization.

Despite this, the top trials from both kernel methods performe comparably or
better than the other classifiers. The high variance in the Polynomial kernel’s
performance suggests that the feature space does not consistently support the
complex decision boundaries it models. In contrast, the RBF kernel’s stable
results suggests that the feature space is better suited to these types of decision
boundaries.

The linear SVM struggled when few color channels are selected and plateaued
in performance beyond five channels, never matching the best scores of the other
methods. This makes the linear SVM less suitable for our use case since each
color channel requires a transformation and thus, increases the computational
load on the Nao. And since selecting more color channels does not improve the
accuracy, other methods are preferred even though linear SVM is a lightweight
method.

Analysis of the best trials in Table 1 reveals a preference for certain tex-
ture methods. With DT and both kernel approximations, the best trials have
the simple texture methods Neighboring Pixel (NP) and LBP, while the linear
SVM has the more complex HoG. The choice of an expensive texture feature
method is one more reason why linear SVM is less suitable. Additionally, the
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best-performing pipelines consistently used a single dominant color channel for
texture extraction, typically the L* or g channel. Interestingly, only the linear
SVM preferred a luminance-based channel while the others favored chromaticity
features.

Group D F2 F2 Score Color Texture
Score (tuned) Channels Method
Baseline - 0.8745 - Y, G H,S -
1577 0.9509 0.9557 Y, Cb, B, I NP
649 0.9499 0.9621 Y, Cb, B NP
DT 1222 0.9399 0.9519 Cr, o NP
1543 0.9374 0.9656 g NP
614 0.9357 0.9545 Cr, B, r, L* a* HoG
, 735 0.9356 0.9524 Cb, R, L*, a* HoG
Linear 844 0.9332 0.9537 R, L*, a* HoG
SVM 950 09221 0.9487 L*, a* HoG
280 0.8825 0.9175 g HoG
Nystrom 1067 0.9526 0.9678 g, a* LBP
RBF 1020 0.9408 0.9470 a* LBP
Nystrém 1626 0.9357 0.9619 g, S NP
Polynomial 1940  0.9356 0.9554 g NP

Table 1: Results of the best trials. The channels marked in bold are used for the
texture feature extraction.

While trends are clearer within classifiers, some consistency appears across
the different groups. For example, the green chromaticity channel frequently
emerged in optimal configurations, which aligns with previous findings in [1].
Furthermore, with only one or two color channels selected, chromaticity channels
such as g, a*, Cr, H, and S are preferred. From three color channels and up, at
least one intensity channel like Y, L*, or I is selected. This suggests that, for
our use case, the chromaticity channels are more relevant, especially for the
texture features. Furthermore, the histograms over the color values in Figure 6
show that the most frequently selected color channels, such as Y, g, a*, and S
exhibit a high degree of class separability. In contrast, L* is selected in all best
trials of the linear SVM despite showing less evident separation between classes.
This suggests that L* may contribute to a linearly separable feature space when
combined with one or more other color channels, making it suitable for the linear
SVM. Lastly, although the G channel is used in the baseline, it is not selected in
any of the best trials and also shows limited class separation in the histogram.
While the baseline thresholds may have performed well on the specific game data
they were derived from, they do not generalize well to the full dataset, which
includes more diverse lighting and field conditions.
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5.3 Classifier-Specific Hyperparameter Tuning

As expected, all classifiers improved slightly after dedicated hyperparameter tun-
ing, with F5 scores increasing by approximately 1 percentage point across the
board (see Fy Score (tuned) in Table 1). These results confirm the added value
of classifier-specific fine-tuning in the second optimization stage.

Both kernel approximation methods increased the number of components
from 50 to 100, effectively enhancing the quality of the approximated kernel
space. For DT, a tree depth of five has the best results which shows that even a
small tree achieves high accuracy. The best DT only takes one color feature and
the color values from the sampled pixels in the neighborhood. Thus, the feature
vector is already small, reducing the need for a deep DT.

5.4 Final Results on the Test Dataset

Applying the tuned models to the test dataset reveals more nuanced strengths
and weaknesses beyond what the F, score alone suggests. Some examples of
predicted segmentation masks are shown in Figure 7. The baseline histogram-
thresholding method performs well under uniform lighting (see bottom row) but
struggles with extreme brightness or darkness. Here, common misclassifications
in the form of false positives are robots, the black spots on the ball, lines with
shadows, and background. False negatives often appear with dark lighting (see
second row).
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The DT model significantly reduces the false positives, especially in the back-
ground and line regions with shadows. However, the classifier tends to under-
perform in darker scenes leading to higher false negatives. The increase in false
negatives is unfavorable since a line detection algorithm could possibly fit a line
through the noise at the bottom which affects the self-localization of the robot.
The linear SVM performs similarly to the DT but incurs more false negatives,
which limits its utility for scenarios like ours where recall is critical.

Llnear Nystrom Nystr('jm
Original Baseline Polynomial

BB B BB

O True Positive B True Negative M False Positive B False Negative

Fig. 7: Predicted segmentation masks with confusion matrix of the baseline and
the best classifiers

The Polynomial kernel approximation excels in detecting field regions under
low light and has the fewest false negatives. However, it suffers from frequent
false positives and misclassifying faint lines, robots, and background elements.
Even thought the F; score is similar to the other methods, the bias towards fewer
false negatives hides the fact that the false positive rate is very high, making
this method unsuitable for our use case.

The RBF kernel approximation achieved the highest Fb score overall. It
showed fewer false positives than the baseline, particularly in distinguishing
robots and background, but still struggled with faint line markings under chal-
lenging lighting. The false negative rate is similar to the one of the baseline.

Overall, the DT, linear SVM, and RBF kernel approximation are able to re-
duce the number of false positives. However, all methods, apart from Polynomial
kernel approximation, underperform in darker scenes. A possible solution to this
problem would be to use the categorized dataset and split it, e.g., into darker
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(most commonly indoor scenes) and brighter scenes, to train multiple variants of
a classifier for varying lighting conditions. Before a game, one would then choose
the most suitable classifier which could already increase the accuracy without
any additional computational resources needed.

Additionally, since the baseline performs well under good lighting conditions,
a two-stage classification pipeline could help reduce computational load. In this
approach, a fast, color-based method, such as a DT or SVM, would first at-
tempt the classification. Only if the confidence is low would a more complex,
texture-augmented classifier be used. This setup balances the trade-off between
performance and efficiency: always using the most accurate method (with both
color and texture features) yields the best results but is computationally expen-
sive. Simpler classifiers or lightweight features save resources but may be less
accurate.

A two-stage approach offers a compromise. Cheap, fast methods handle easy
cases, while more demanding methods step in only when needed. This makes the
system more efficient and suitable for real-time, resource-limited platforms like
the Nao robot. However, this strategy has not yet been implemented.

Overall, no single method clearly outperforms the others. The RBF kernel
approximation achieves the highest F, score and produces segmentation masks
with fewer false positives and no increase in false negatives, making it the most
accurate approach. However, this accuracy comes at a cost, the method is com-
putationally expensive, and it remains uncertain whether it can run efficiently
on the Nao robot.

In contrast, the DT further reduces false positives but introduces more false
negatives. Still, it is significantly more lightweight in terms of computation, using
fewer color channels and a simpler texture feature method. Because of its strong
balance between accuracy and efficiency, the DT shows the most promise for our
image segmentation task, particularly when using multiple decision trees tailored
for different lighting conditions or integrating it into a two-stage classification
pipeline.

6 Conclusion and Future Work

This paper presented an effective optimization pipeline for developing lightweight
and accurate segmentation methods tailored to the constraints of the Nao robot.
By systematically combining different color and texture features with various
classifiers, we are able to obtain models that achieve high F5 scores while keeping
computational demands low.

Among the tested methods, the DT and the RBF kernel approximation of-
fered the best trade-offs between accuracy and efficiency. The DT stood out
as the most practical choice for real-time use, offering solid performance with
minimal resource requirements thanks to its simplicity and the use of the in-
expensive Neighboring Pixels texture descriptor. Its accuracy and practicability
can be further enhanced by training separate models for different scenarios or
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by employing a two-stage classification pipeline, starting with a fast, low-cost
method and falling back on a more complex one only when necessary.

Overall, this work demonstrates significant progress toward building domain-
specific, low-computation segmentation pipelines for embedded systems like the
Nao robots used in the RoboCup SPL. Future research may explore additional
classifiers such as Multi-Layer Perceptrons, expand the range of texture descrip-
tors, or develop ensemble or condition-aware models, e.g., ones tuned for different
lighting environments. Ultimately, the most promising pipeline will be deployed
and tested directly on the Nao robot to evaluate its real-time performance during
actual match conditions.
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