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1 Introduction

This thesis is written as part of the research the robot soccer team Hamburg Ultra Leg-
endary Kickers (HULKs) does at the TUHH. The following chapter will introduce the
used robotic platform ”NAO”, give a short overview about the RoboCup, explain the
motivation and goals of this thesis, present some existing solutions for robot detections
and explain how this thesis is going to approach the problem.

1.1 The NAO Robot

The NAO is a robot developed by the French company Aldebaran Robotics which is now
part of the Japanese Softbank Robotics Corp.. It has been in development since 2006 [23]
and is currently available in its fifth version. This is the robot that is being used in the
Standard Platform League (SPL) and is also the robot used for this thesis.

Figure 1.1: NAO robot kicking a ball at RoboCup 2016 in Leipzig [16]

The NAO is powered by an Intel ATOM Z530 processor with a clock speed of 1.6 GHz and
1 GB RAM. It has two front facing cameras, one in the forehead and one at the position of
it’s mouth. As visible in figure 1.2 the perceptional fields of the two cameras only overlap
partially. Therefore stereo vision is not possible. Both cameras support resolutions of up
to 1280x960 px with 29-30 frames per second [24]. The HULKs software framework uses
a resolution of 640x480 px and the YCbCr1 color space for it’s computations.

1Details about this color space can be found in [14], [21] and [22].
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Figure 1.2: Position and perceptional field of the cameras used in the NAO robot[1]

1.2 The RoboCup

RoboCup is the short form for “Robot World Cup Initiative” and is an annual event where
teams from all over the world compete in various activities using different kinds of robots.
The general idea of the RoboCup is not just to compete and play soccer with robots but
rather to provide a platform where a “wide range of technologies especially concerning
multi-agent research can be integrated and examined” [13]. After it’s conception in 1995
the first RoboCup was held in Nagoya, Japan in 1997 and has since been carried out in
over 15 different countries [17].

Standard Platform League

The SPL is the league the HULKs participate in. In the SPL every team has to use
the NAO robotic system and is not allowed to modify it in any way. This removes the
necessity of having to cope with hardware problems and sets the focus on the software
used.

A SPL game takes twenty minutes and is played in two halves of ten minutes each, with
a short break in between. During a game the robots have to act completely autonomous
and do not receive any commands from outside. This means the robots have to be able
to localize themselves on the field, find the ball, avoid other robots, find the enemy’s goal
and score all by themselves.

By gradually implementing new rules the RoboCup officials try to increase the difficulty
of the competition with each year. This way the researchers working in the teams often
have to cope with unfamiliar situations and need to find new ways to deal with them.
One of these changes was switching from a completely red to a black and white ball for
the 2016 RoboCup. For the 2017 RoboCup it is planned to switch from flat green carpet
to artificial turf for the soccer field. The lighting conditions are due to change as well.
Instead of using only artificial light sources the new rules intend to put every field close
to a window to force natural lighting conditions [18].
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1.3 Motivation

Being able to perceive other players is crucial for playing soccer. It opens the possibility
to plan ahead and allows for creating strategies and therefore secures a better chance of
winning. This not only counts for humans playing soccer, it is also very important for
robot soccer.

A robot which is not able to see other players will:

• be much more likely to loose the ball to the enemy when dribbling.

• tend to run into other robots where it might either fall and loose time or cause a
pushing foul which will bring a penalty of at least 45 seconds with it[18].

• not be able to tell where the enemy goalkeeper is positioned inside the goal and
might shot straight at it.

When a robot is able to see other players it allows for:

• better ways of path planning by avoiding other robots on the way to the ball and
finding the optimal way to the goal.

• using the information to find a spot with a lot of space so the robot is free for passes.

• using information about other robots to better localize the robot itself.

• informing their teammates about enemies that are following, so they can act ac-
cordingly.

So far the HULKs software framework does not contain any means of detecting other
robots, while other teams have already implemented various ways of realizing this. The
absence of a robot detection creates a major disadvantage for the HULKs, which is why
the motivation for this thesis was to catch up on this part.

1.4 Overview of existing Approaches

This section will shortly present the means tested and implemented in works of other
teams. Works of the following teams were examined: rUNSWift, Nao-Team HTWK and
B-Human.

rUNSWift

There are two works describing the techniques tested by the two times SPL world cham-
pion from Sydney, Australia. The team successfully tested a decision tree classifier which
was able to achieve up to 97.7% accuracy and a false positive rate (FPR)2 of about 2%[6].

2An explanation of the terms accuracy and FPR is given in 3.1
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That is a very good result but according to [4] it was not implemented on the NAO “due
to lack of processing power to run the algorithm”. A Bayesian classifier which achieved
between 80-87% accuracy and a FPR of 9% was proposed as a replacement [4].

Nao-Team HTWK

The NAO-Team HTWK implemented a feature-based linear regression approach in 2012.
This method is documented in [11] and achieved about 90% accuracy, 87% recall and 3%
FPR.

B-Human

B-Human uses an approach that does not rely on a trained classifier. According to [3]
it performs the robot detection in less than two milliseconds. It basically scans for areas
inside the field boundaries which do not contain field color and defines them as obstacles.
If a jersey color is found it will become either a teammate or an enemy robot.

The approach used by B-Human requires good knowledge of where the soccer field starts
and ends and the algorithm needs to have prior knowledge about the proposed objects to
make sure only actual robots are detected. Since for the HULKs software framework this
was not a given at the time of creating this thesis, the classification approach used by the
other teams was a more suitable concept.

1.5 Goals

The aim of this thesis is to examine different Neural Network (NN) architectures for the
purpose of a robot detection which is implementable on the NAO according to the set
requirements explained in 4.2. Especially Convolutional Neural Networks (CNNs) which
have become very famous in the field of object recognition over the recent years are a very
interesting option and have not been evaluated in this context yet. Since the approach
of using a linear regression, which is comparable to using a simple NN, showed very
promising results[11]. A comparison between feature-based NN classification and CNNs
is also part of this work.

1.6 Problem Overview and Thesis Structure

A common way of approaching an object detection is to separate it into two parts. The
first part, the object localization, describes the part of the algorithm that looks for areas
containing objects. The second part, the object classification, uses a trained classifier to
calculate which of the labels it knows fits best to the areas provided by the localization.
An example for this can be seen in figure 1.3.
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Object
Localization

Object
Classification Robot

Robot

Background

Figure 1.3: Common steps of an object detection

This separation into two parts was also done during this thesis. First an algorithm that
is able to generate a set of robot candidate areas was written. This candidate generation
algorithm is explained in-depth in chapter 2.

Candidate 
Generation Reduction

Figure 1.4: Steps of the object localization used for this thesis

As can be seen in figure 1.4 the areas defined by the candidate generation are reduced
to smaller sizes and the color information is discarded. Why and how this was done is
explained in chapter 3 along with the theoretical basics needed to understand how the
classification works. Figure 1.5 shows the classification approaches that were examined.

Convolutional
Neural
Network

Feature
Calculation

Neural
Network

Robot

Robot

Background

Figure 1.5: Steps of the object classification used for this thesis

Using the previously generated candidates both a feature-based NN method and CNNs
were tested and evaluated. The results of this evaluation can be found in chapter 4.

Chapter 5 concludes this thesis by providing a summary of the results and presenting
suggestions on how to proceed on this topic.
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2 Candidate Generation

In order to recognize whether an image contains a robot the first step that has to be taken,
is to find image areas which are have a high chance of containing a robot. These areas,
which will be referred to as robot candidates, can then be used as an input for a classifier
that, based on its training, decides whether a candidate is a robot or not. The following
chapter will explain the algorithm used for extracting these candidates and present it’s
runtime and results.

2.1 Cluster Creation

Since robot soccer is played on a soccer field which consists of different shades of green,
the color information can be used to define what could be interesting areas for finding
robots. In general anything the robot sees inside the soccer field that differs from the
green field color can be assumed to be some kind of object. During a game there are only
a few different objects on the field the robot can see: the ball, other robots and sometimes
a referee’s leg. Therefore the idea of finding robot candidates that is used for this thesis
is to look for areas that consist of shapes which do not contain field color.

The HULKs software framework provides a very helpful tool for analyzing images, called
the Image Segmenter. The Image Segmenter creates a scanline for every fourth pixel
column in an image. This means, that it moves through every fourth pixel column and
calculates it’s local gradients in vertical direction. For each of the scanned columns it
then defines one dimensional regions based on the calculated gradients. Start and end of
these regions are marked by gradients exceeding a set threshold. The Field Color Detec-
tion then marks the regions which are detected as field color and passes them on to the
algorithm explained here. Figure 2.1 shows an original image and it’s segmented image.

(a) Original image (b) Segmented image

Figure 2.1: Image scanned by Image Segmenter

The Image Segmenter creates regions of comparable gradient size which are shown as lines
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of the same color. Due to only every fourth column being scanned the segmented image
appears very dark and it is hard to see the single regions. For visualization purposes
figure 2.2 fills these blank spaces between the scanlines with neighboring regions.

Figure 2.2: Segmented image with filled blank spaces

To be able to specify an actual area of interest the one dimensional regions need to be
combined to two-dimensional clusters. The way the algorithm does this is as follows:

Merging of single line regions:

First the algorithm moves through every single region on a scanline and merges it with the
previous region if neither contains field color. Figure 2.3 shows the merging in progress.

1 2 3 4 5 1 2 3 4 5

Figure 2.3: Merging of one dimensional image regions. Green lines represent field color
regions, blue lines are non-field color regions and black lines have not been evaluated yet.
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As can be seen by the arrow on top of the image the algorithm currently checks scanline
number four. Before merging, many small, separated, non-field color regions exist. After
merging, the blue regions are only separated by green field-color regions.

Cluster Forming:

Now for each non field color region on the current scanline it is checked whether it can be
combined with any non field color cluster on the previous scanline. Clustering is allowed
when:

1. the two regions overlap,

2. the region is longer than kmin length,

3. the region is not more than kgrow times larger than the previous,

4. the region is not more than kshrink times smaller than the previous.

Where kmin length, kgrow and kshrink are tuneable parameters. When all of the four criteria
are met the region will become part of the previous cluster.

1 2 3 4 5 1 2 3 4 5

Cluster 1
Cluster 1

Cluster 2

Figure 2.4: Creation of two dimensional clusters. The red arrows show how the existing
clusters change during step four.

As can be seen the upper blue region in scanline four will be combined with the existing
cluster symbolized by the red arrows. The lower blue region cannot be combined with
the existing cluster because they do not overlap. Instead it forms a new cluster with the
blue region at the bottom of scanline three.
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Creating bounding boxes:

After creating the clusters, bounding boxes are formed from the minimum and maximum
x and y values in the regions forming the clusters. A possible result of the clustering
algorithm can be seen in figure 2.5.

Figure 2.5: Clustering result. The calculated bounding boxes are shown in red. The
purple and green crosses represent beginning and end of the used regions inside a cluster.

Looking at figure 2.5 it is obvious that the algorithm creates a large number of areas
not containing robots. One reason for this is the used field color detection algorithm
demonstrated in figure 2.6.

Figure 2.6: Field color detection image with all field color pixels marked in purple.
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It is easy to see that there are a lot of pixels in the robot which were falsely classified as
field color. This is also the reason for the small clusters on the right side of the robot in
figure 2.5. The clusters on the top and bottom left can be explained by the sensitivity
of the field color detection to changes in lighting conditions. Since some of the pixels
in these regions become very dark, the algorithm does not consider them as field color
anymore and the clustering program starts to create clusters from these areas. Another
very obvious problem are field lines, as is noticeable in the lower left corner of figure 2.5.

2.2 Cluster Evaluation

Evaluation of all created clusters would cause extreme computational costs, therefore
different measures for filtering had to be taken. Using the following three criteria for
filtering proved to reduce the amount of irrelevant clusters to a minimum.

• Overall cluster size

• Cluster aspect ratio

• Variance of region lengths inside clusters

Cluster Size Filter

This filter is very straightforward. By constraining the minimum width wmin and height
hmin a cluster needs to have and the maximum width wmax and height hmax it can pos-
sibly reach to still be considered a robot candidate, a lot of the generated clusters can
be eliminated. The application of the filter can be seen in figure 2.7. The white boxes
indicate clusters that are removed by the size filter. The figure also demonstrates one of
the problems with this filter. Sometimes it can remove clusters which do contain robots
like the one in the background. Since it is more important to detect robots which are
close and allowing smaller clusters tends to also allow more non-robot clusters, this is a
compromise that had to be taken.
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Figure 2.7: Application of size filter

Cluster Aspect Ratio Filter

The second filter applied takes the aspect ratio of a robot into account. The way it
was implemented it assumes a robot cluster to be taller than wide. This makes sure that
clusters which are wider than tall are not considered to be robot candidates. The effect
is demonstrated in figure 2.8 where black bounding boxes resemble the clusters which are
discarded. How the filter acts can be controlled via the two parameters wtol and htol.

Figure 2.8: Application of aspect ratio filter
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Variance of Region Lengths Filter

Applying the first two filters already managed to exclude many non-robot clusters. One
problem that remained was clusters which formed on field lines because they often reached
the same sizes as the robot clusters. Figure 2.9 represent a situation where this happens.

Figure 2.9: Problematic clusters after size and ratio filter

As can be seen in figures 2.9 and 2.8 the clusters on field lines share a common charac-
teristic. The lengths of the regions inside the cluster are almost constant. By calculating
the variance of these lengths this characteristic can be used to filter them. The formula
for variance is as follows:

V (X) =

∑n
i=1 x

2
i

N
− µ2 ∀ xi ε [x1, x2, x3, ..., xn] (2.1)

xi : a single region length
µ : mean of all region lengths
N : total amount of regions in cluster

While testing, this definition for variance proved to be problematic. Due to it’s results
differing a lot depending on the lengths of the regions inside the cluster, it was not possible
to find a suitable threshold for the variance value. When a cluster is formed close to the
camera the lengths get larger whereas clusters further away hold shorter length regions.
This effect can be witnessed when comparing the field line clusters in figure 2.9 and 2.8.
To account for this, the variance was normed by the mean of all region lengths.

Vn(X) =
V (X)

µ
(2.2)
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The filter’s results on the clusters from figure 2.9 are shown in figure 2.10. Here the
eliminated clusters are marked in blue.

Figure 2.10: Application of variance filter

Since the clusters which do contain robots generally consist of regions of varying lengths,
they are not affected by this filter. Figure 2.11 provides two images showing the final
results after applying all three filters.

Figure 2.11: Final results after applying all three filters

All the parameters which were mentioned in this section can be controlled through a con-
figuration file and are tunable while the robot is running the program. The configuration
file used for this thesis can be found at A.1.
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2.3 Performance

In order to evaluate the performance of the candidate generation algorithm it was run
on 14109 different pictures which had been recorded during numerous Robocup games.
The following section will analyze how the algorithm performed in terms of runtime and
produced candidates.

During testing on said 14109 pictures the algorithm achieved the following results:

Candidate Statistics

• Overall amount of candidates generated: 4302
• Average amount of candidates per image: 0.305
• Maximum amount of candidates on a single image: 7
• Amount of candidates being robots: 1641 (38.15%)
• Amount of candidates being background: 2661 (61.85%)

These numbers show that even after applying all three filters the algorithm still produces
a large number of background candidates. This also demonstrates the necessity for a
classifier for a reliable robot detection.

Runtime statistics

For runtime evaluation the runtime for each part of the algorithm was tested separately.
The algorithm was split in the following parts:

• Cluster creation

• Bounding box calculation

• Filter application

• Cropping and resizing

• Conversion for classifier

Cluster creation, bounding box calculation and filter application are independent of the
amount of robot candidates and have to be run on every image. Cropping, resizing and
the conversion for the classifier on the other hand are only run when robot candidates
were found.
Cropping, resizing and the conversion for classifier parts are necessary to reshape the data
in a form which is usable by the used C++ libraries. Cropping and resizing describes the
algorithm which is needed to reduce the candidate frame to the target size. Conversion
then scales all it’s values to values between 0 and 1.
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For measuring the runtime the algorithm was run on the NAO robot with a exemplary
target image size of 17x27 pixels3. Overall the results of 4800 cycles were recorded. The
results of the measurements can be examined in figures 2.12 and 2.13. The boxplot defi-
nition used in this thesis is the one defined by John W. Tukey [27].
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Figure 2.12: Overall candidate generation times
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Figure 2.13: Runtimes per candidate generation part

Figure 2.12 reflects the fact that cluster creation, bounding boxes calculation and filter
application have to be done on every image, even if it will not yield any robot candidates.
The algorithm idles at an average of 0.63 ms on images without candidates, the maximum
measured time being 0.95 ms. With increasing amount of candidates per image these
times increase by the times needed for cropping and resizing and the conversion for the
classifier. Cropping and resizing needs an average of 0.045 ms per candidate with a
maximum measured at 0.098 ms. The conversion takes 0.037 ms on average and it’s
maximum was measured at 0.128 ms per candidate.

3The image size that is going to be fed to the classifier, here 17 pixels wide and 27 pixels high. How
these were determined is explained in 3.3
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A linear approximation following these results looks like this:

tavg = 0.63 ms+ (0.045 ms+ 0.037 ms) · n (2.3)

tmax = 0.95 ms+ (0.098 ms+ 0.128 ms) · n (2.4)

tavg : average time per candidate
tmax : maximum time per candidate
n : amount of candidates

As can be seen in figure 2.13 the cluster creation is the most time intensive part of the
algorithm and is responsible for the largest part in the overall runtime. In contrast the
runtime of the filters can almost be neglected.
When constraining the algorithm to only evaluate a maximum of five candidates per
image and using formula 2.4 for that situation, it results in a worst-case runtime estimate
of about 2 ms for the whole candidate generation. The average runtime can be estimated
using 2.3 and an average amount of one candidate per image. This results in an average
runtime estimate of 0.7 ms.
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3 Classification Prerequisites

The following chapter is used to explain the basic terms needed to be able to evaluate
a classifiers performance. It presents the software that was utilized for creating and
evaluating the robot detection approaches assessed during this thesis and demonstrate
which data was used and how it was processed for classification. 3.4 and 3.5 provide the
theoretical basics on how NNs and CNNs work.

3.1 Basic Terms

In the field of machine learning there are a lot of different ways of visualizing the results
of a classifier. One prominent way of presenting an overview of a classification outcome is
the confusion matrix. Figure 3.1 shows such a confusion matrix for a binary classification
problem with the two classes “yes” and “no”.

Figure 3.1: A confusion matrix for a two-class classification problem[8]

In order to stay in the context of this thesis, it can be assumed that the classifiers input
data was robot candidate images. A “yes” label means that there was a robot in the
image and “no” means there was no robot in the image. In this example the classifier was
given 165 different candidate images and it generated an output label for each of them.
Since the labels of the candidates were known upfront it is now possible to create the
confusion matrix shown above.

By simply looking at each prediction and checking it’s actual label it can be sorted into
the correct matrix cell. If the classifier predicted “no” and it was actually “no” it goes in
the top left cell. If the classifier predicted “yes” but it was actually “no” it goes into the
top right cell, and so on. There are four basic terms which are important when comparing
predicted and actual labels:

True Negative (TN): predicted “no” and it was “no”

False Negative (FN): predicted “no” but it was actually “yes”

True Positive (TP): predicted “yes” and it was “yes”

False Positive (FP): predicted “yes” but it was actually “no”
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Adding these terms and the sums of the rows and columns to the matrix yields figure 3.2.

Figure 3.2: Extended confusion matrix[8]

This matrix by itself is not suitable for comparing classification results. It does however
provide the basis for various performance indicators.

Indicator Formula

Error (FP + FN)/n
Accuracy (TP + TN)/n = 1− Error

True Positive Rate (TP/FN + TP )
False Positive Rate (FP/TN + FP )

Precision (TP/FP + TP )
Recall = True Positive Rate

Sensitivity = True Positive Rate
Specificity (TN/TN + FP ) = 1− False Positive Rate

Table 1: Classification performance indicators[2]

Table 1 lists the most commonly used indicators. An explanation on which of these
indicators are interesting in the course of this thesis is given in 4.2.
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3.2 Used Software

This thesis can be split into two parts regarding the used software.

1. Testing and evaluating NNs

2. Implementation on the NAO

Most of the testing and research was done in Python using the Caffe machine learning
library[5]. Caffe is a library developed and maintained by the Artificial Intelligence Re-
search Lab of the University of Berkeley. It is mostly written in C++ but comes with a
Python Application Programming Interface (API). The library allows for easy creation
of complex NN structures and provides all the necessary functions for training and eval-
uation. It was used to automate the creation, training and testing of NNs for varying
parameter sets. Another library which was used for several Python algorithms is Scikit-
learn[15]. Scikit-learn provides very straightforward implementations of many different
machine learning related algorithms. This library was mainly used for visualizations and
data handling.

For running the created NNs on the NAO the C++ library tiny-dnn was used[25]. This
library comes with a Caffe model converter which allows for a simple conversion of the
models created with Caffe. Since this is a header-only library it is very lightweight and
easy to implement on the NAO. Another feature this library provides is it’s capability
to use Streaming SIMD Extensions (SSE). An extended instruction set available for the
NAO’s processor which can greatly improve the runtime of the networks.

3.3 Data

As mentioned in 2.3 4302 candidate images were generated. These images are the basis for
the data that is going to be used for training the networks. For testing 976 new candidate
images were generated from data recorded in the HULKs laboratory.

For the purpose of labeling these candidates a Python script was written which shows
one image at a time and depending on which button the user pushes, moves it to a folder
named like the class it is supposed to belong to.

It is important to mention that only the information of the Y-channel of the YCbCr-
images was used. The decision is based on [11], where the results showed that the color
channels did not provide much useful information for classification. Using only the Y-
channel also helps to keep the resources needed at a minimum because it reduces the used
information by two thirds.

Another idea taken from [11] is to reduce the image width and height fed to the classifier.
As shown there, the input images can be made much smaller and still produce good
classification results. The image sizes analyzed during this thesis were created by using
the median aspect ratio of all generated robot candidates, which was found to be 0.637.
An example for this way of generating image could be: using an image width of 17 px the
height becomes 17/0.637 ≈ 27 px.
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A common way of handling the data necessary for training and testing classifiers is to
split it into three parts.

Training set:
The set used for training the weights of a NN.

Validation set:
The set used for validating the model during training. This set is used to find at which
state the model achieved the best results during training. It is also used to evaluate
different model parameters.

Test set:
A set which is exclusively used to see how well the final chosen model generalizes. This
set has to consist of data the classifier has never been in contact with before.

The data acquired was also split this way. 80% of the 4302 candidate images were used for
the training set and the remaining 20% for the validation set. The way this was organized
is explained in 4.1. The test set was formed from the 976 candidates generated from new
data. This set always stayed the same and was never changed in any way. It consists of
49.6% background images and 50.4% robot images.

Figure 3.3: Robot class example images

Figure 3.4: Background class example images
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3.4 Neural Networks

Artificial neural networks are computational models inspired by the neurons in a human
brain. Inside the brain the purpose of these neurons is to process information. By
combining many of these neurons to a network, humans have the ability to make complex
decisions based on the information the brain collects and processes. In the human brain
each neuron has about 104 connections to other neurons all of them operating in parallel[2].

Figure 3.5: Sketched model of a biological neuron[10]

3.4.1 Neurons

Artificial NNs try to imitate these connections of the human brain. The smallest element
in such a network is a single neuron. Figure 3.6 shows the mathematical abstraction of
the biological model demonstrated in figure 3.5.

Figure 3.6: A single artificial neuron[12]

Here x1, x2 and x3 represent the inputs and w1, w2 and w3 the weights belonging to these
inputs. By adding up the input-weight products and including the bias b as an additional
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variable the neuron output hw,b is generated.

hw,b(x) = f(
3∑

i=1

wixi + b) (3.1)

By defining w0 = b and creating input vector x = [1, x1, x2, x3]
T and weights vector

w = [w0, w1, w2, w3] the formula can be rewritten in a more compact form:

hw,b(x) = f(wTx+ b) (3.2)

3.4.2 Activation Functions

The function f() in equations 3.1 and 3.2 symbolizes the activation function used by the
considered neuron. The idea of the activation function is to introduce a non-linearity
into the calculation which is necessary when approximating non-linear functions. There
is a large variety of different activations functions but the most commonly used are the
following:

1 0 1
Identity

1

0

1

10 0 10
Sigmoid

10 0 10
Hyperbolic Tangent

1 0 1
ReLU

1 0 1
Leaky ReLU

Figure 3.7: Overview over most common activation functions

Identity:

The identity function is the equivalent to not having any activation function at all. With
this function the neuron’s input equals it’s output:

f(x) = x (3.3)

Sigmoid:

The sigmoid function is a special case of the logistic function. It is a derivable relative of
the step function which is bounded by the interval [0, 1] and has a positive derivative at
each point.

f(x) =
1

1 + e−x
(3.4)
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Hyperbolic tangent:

Just like the sigmoid function the hyperbolic tangent is a S shaped function. The differ-
ences between the two are, that where the sigmoid function saturates inputs at 0 and 1
the hyperbolic tangent does this at -1 and 1. It is therefore a zero-centered function.

f(x) =
ex − e−x

ex + e−x
(3.5)

Rectified Linear Unit (ReLU):

The ReLU function has become one of the most popular activation functions for NNs. It
computes:

f(x) = max(0, x) (3.6)

which is the same as a thresholding at 0. This function is especially popular due to its
simplicity and non-saturating character. It can however suffer from the “dying ReLU”
problem. The “dying ReLU” problem describes the possibility of a weight-update during
training in such a way that the neuron will never activate again. This can happen when
setting the learning rate too high[10].

Leaky ReLU:

The Leaky ReLU is an attempt at avoiding the “dying ReLU” problem. It is basically a
ReLU function with a minimal gradient for negative input values.

f(x) =

{
αx x < 0
x x ≥ 0

(3.7)

For this thesis α, was chosen to be 0.1 based on [12].
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3.4.3 Networks

When connecting multiple neurons with each other in such a way that outputs of neurons
become inputs of other neurons a neural network is formed. NNs are in most cases
organized into layers of neurons as can be seen in figure 3.8.

Figure 3.8: Model of a NN

The network shown above consists of three layers, an input-layer L1, a hidden-layer L2

and an output-layer L3. It is important to know that the nodes in layer L1 are no neurons
since there is no computation happening in that layer. That is also the reason why such a
network is referred to as a two-layer network. Another noticeable attribute of the network
is that every node in one layer is connected to all nodes in the next layer. This attribute
is why such a structure is called a fully-connected layer.

The notation for such a network also becomes more complex. A weight is now symbolized
by w

(l)
ij , where l is the layer, j is the start-node and i is the end-node of the weighted

connection. All weights that belong to a certain neuron j in layer l+1 can be summarized
by the weight vector w

(l)
j . The same notation is also used for the biases. b

(l)
i describes the

bias connected to node i in layer l + 1. The output of a neuron i in layer l is described
by a

(l)
i .

Calculating the output of the network then becomes:

hw,b = a
(3)
1 = f(w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1 ) (3.8)

a
(2)
1 = f(w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1 ) (3.9)

a
(2)
2 = f(w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3 + b

(1)
2 ) (3.10)

a
(2)
3 = f(w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3 + b

(1)
3 ) (3.11)

How such a network is trained is not demonstrated here because this thesis did not
investigate this part. Information on training can be found in [2] [10], [12], and [20].
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3.4.4 Influences on Runtime and Results

When analyzing NNs there are five main factors which have an influence on the classifi-
cation outcome.

f

hidden layers

...

features

1

{
{5 3 42

Figure 3.9: Visualization of influences on runtime and results of NNs. Based on [10]

1. The used features

2. The used activation functions

3. The amount of hidden layers

4. The amount of neurons in each layer

5. Input size (width and height of the used images)

The effects of each of these factors on the classification results and the necessary runtime
will be examined in section 4.5.
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3.5 Convolutional Neural Networks

CNNs have become very popular over the recent years. Especially due to Deep Learning
Machines like Google’s AlphaGo which recently won against a champion of the Chinese
game Go[19].

CNNs are particularly famous for their capabilities in image recognition. Figure 3.10
shows the history of algorithms used for one of the worlds largest image recognition
competitions, the ImageNet Large Scale Visual Recognition Competition (ILSVRC).

Figure 3.10: A history of the ImageNet accuracy rates[26]

CNNs were first used in 2012 for the ILSVRC and achieved accuracies much higher than
the traditional algorithms. Only two years later all teams had already switched to using
deep learning methods like CNNs.

As their names suggest, CNNs are a special kind of neural networks. They very much
behave like conventional NNs. They are made up of neurons and have trainable weights
and biases. Every neuron receives an input and produces an output using an activation
function. They do however differ in many ways, the most significant being that they can
learn the features necessary for recognizing objects in images.

CNNs make use of a variety of different layer types necessary for recognizing different
patterns. Modern CNNs use up to 100 million parameters and usually consists of 10-20
layers, which is also the reason for the term deep learning [10].

The three different types of layers most CNNs consist of are Convolutional Layers, Pooling
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Layers and Fully-Connected Layers. Fully-connected layers have already been explained
in 3.4 and work for CNNs just like they were presented there.

3.5.1 Convolutional Layers

Figure 3.11: Sketch of a convolutional layer[12]

Figure 3.11 demonstrates the principle of a convolutional layer. The red block on the
left is the network’s input. For CNN-layers inputs are in most cases three dimensional
volumes. The input here can be interpreted as a 32 by 32 pixels image with a depth
of 3. The depth equals the channels of the image, e.g. red, green and blue for a RGB
image. The smaller blue box in the middle resembles a convolutional kernel or filter. This
is where the weights of the convolutional layer are located. A kernel is usually square
and much smaller in width and height than the input. It does however always have the
same depth as the input. Here the kernel is 5x5x3. This means that it holds 75 weights
plus one bias which results in a total of 76 parameters. The kernel’s weights and bias
are trained like the weights in a conventional neural network. It’s output is generated by
sliding the kernel across the input and calculating a dot product of the weights with the
inputs where it is currently located. The size of the output is determined by four factors:
the input size hinput, the amount of kernels n, the size of the kernels hkernel and the stride
s. The stride describes how far the kernel moves with each iteration. A stride of 1 means
that it moves one pixel per iteration whereas a stride of 5 results in a jump of five pixels
per iteration. The output size assuming square kernels can be calculated via:

houtput =
hinput − hkernel

s
(3.12)

doutput = n (3.13)
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Using the formula it is easy to determine that the stride used for the example in figure
3.11 equals 1. As equation 3.13 shows, the depth of the output volume doutput is only
determined by the amount of kernels n. So each kernel creates one output slice. When
using multiple kernels the output slices are stacked and form a volume.

The kernel’s output slices are often referred to as feature maps. Each of the kernels
learns to extract a specific feature in the image. This could be things like vertical edges,
horizontal edges or colors. By using the output of a convolutional layer as the input for
another layer the network gains the ability to combine features and thus is able to find
specific characteristics of objects contained in the images.

3.5.2 Pooling Layers

Pooling layers are often used in-between successive convolutional layers. Their objective
is to reduce the size of the data that is being processed to lower the amount of parameters
needed and reduce the overall computation cost.

Figure 3.12: Demonstration of the downsampling effect of the pooling layer[10]

Figure 3.12 demonstrates the downsampling effect achieved by such a layer. Not unlike
the convolutional layers the pooling layers use a kernel that slides over the input. It does
not however have weights and calculate a dot product but it rather applies one single
operation on the area it is looking at. There are a couple of different operations which
can be applied like averaging or applying a L2-Norm, but the most popular is max pooling.

Figure 3.13: Sketch of a max pooling layer[12]
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Max pooling chooses the highest value of all values it is regarding and uses that as it’s
output. Figure 3.13 shows how max pooling works. The most common way of applying
max-pooling is with a pooling window of size 2 and a stride of 2. This makes sure
that the sliding window never looks at overlapping parts. Applying the layer this way
cuts the data by 75% as can be seen in figure 3.12 where the data was reduced from
224 · 224 · 64 = 3211264 to 112 · 112 · 64 = 802816 data points.

Combining convolutional, pooling and fully-connected layers is the basis of all CNNs. An
example of such a network can be viewed in figure 3.14. The CNN shown here is called
AlexNet, this is the network that won the ILSVRC in 2012.

Figure 3.14: Structure of AlexNet[9]

3.5.3 Influences on Runtime and Results

When analyzing CNNs there are seven main factors which have an influence on the clas-
sification outcome.
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Figure 3.15: Visualization of influences on runtime and results of CNNs
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1. The used network structure

2. The stride

3. The used activation functions

4. The amount of convolutional kernels

5. The size of the convolutional kernels

6. The amount of hidden neurons in fully-connected layers

7. Input size (width and height of the used images)

The effects of each of these factors on the classification results and the necessary runtime
will be examined in section 4.6.

3.6 Overfitting

Overfitting is a problem discovered commonly when using machine learning. It describes
the problem that a given model can fit it’s training data so perfectly, that it looses the
ability to generalize. Figure 3.16 shows this effect schematically.

(a) Underfitting (b) Good fit (c) Overfitting

Figure 3.16: Plot showing ways of fitting polynomial data samples. (a): Using a linear
approximation which underfits the true function.(b): A polynomial of degree 4 fits the
true function almost perfectly. (c): A polynomial of degree 15 overfits the data.

When using a neural network with possibly tens of thousand of degrees of freedom it is
easy to overfit, especially when using only small amounts of training data. The effect this
can have on the classification result is shown in figure 3.17.
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Figure 3.17: Effects of overfitting on the classification outcome of a classifier [12]

Figure 3.17 shows that when comparing the training error with the error on the validation
set it can happen that at a certain point in training the error on the validation set begins
to get worse. This is what happens when the classifier overfits the training data. Since it
has never seen the validation data before, the increase in error on the validation set while
the training error keeps getting smaller clearly shows that the classifier looses it’s ability
to generalize.

When not addressed, overfitting is a problem that can have a great impact on how well
a classification achieves. The methods that were used to make sure this doesn’t happen
are explained in 4.3.
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4 Tests and Evaluation

The following chapter describes how the different classification approaches were tested
and presents the collected results. First it will be explained how the general procedure
of training and testing a network was handled. It will also demonstrate how the quality
of each classifier was determined by introducing a scoring function. In 4.3 there will be
a brief explanation on what measures were taken to prevent the problem of overfitting.
The chapter is concluded by the evaluation of all influences on classification results and
runtime for feature-based classification in 4.5 and for CNNs in 4.6.

4.1 Execution

This section is going to give a short overview about how the testing was executed. It
is divided in the two phases each network went through: “Training and Validation” and
“Testing”.

4.1.1 Training and Validation

For training and validating the networks, a k-fold-cross validation with k = 5 was exe-
cuted. A k-fold cross-validation describes the process of splitting the given data in such
a way that it consists of k different training - validation splits. It is split such that each
data point is part of the training set k − 1 times and part of the validation set once [20].

For creating and training different networks a script was written which automates this
process. The parameters that can be passed to the script are:

• Input image size

• Activation function

• Amount of hidden neurons

• Stride (CNNs only)

• Kernel size (CNNs only)

• Amount of kernels (CNNs only)

All of these parameters can be passed as lists such that the script will create and train a
network for each combination possible. The training was carried out using mini-batches
of size 200 which means that for each training iteration the network is fed 200 random
images taken from the training set on which it computes it’s weight updates. The training
of a network stops as soon as 3000 iterations are done.

During the training process a snapshot of the current model is taken after every 100
iterations. A snapshot saves all current weights of the network and the current solver
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state. In total a training run which involves 3000 iterations saves 30 snapshots along the
way.

Validation is done by taking all snapshots created during training and evaluating them
on the validation set. From all evaluated snapshots the script saves the snapshot which
achieved the highest accuracy in a separate file and labels it as the best iteration for this
network.

After training and validating five times the results of the five best snapshots are averaged
and written to a log file for later evaluation. The network runtime is added to this log
via another script that measures the time each network needs on the NAO.

The validation script also creates different plots for visual evaluation. 4.1 shows a compar-
ison plot between training and validation accuracy. An example of the visualized weights
of a convolutional layer is demonstrated in A.2.
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Figure 4.1: Training and validation accuracy development during training of a CNN

4.1.2 Testing

For testing, chosen networks are retrained on the complete training and validation data
and then evaluated on the test set. The retraining is done to make use of the full data
that was previously split in a training and validation set.
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4.2 Evaluation Criteria

The classification performance of the different NNs will be evaluated with regard to three
main factors:

1. False Positive Rate

2. Runtime

3. Recall (True Positive Rate)

FPR is inarguably the most important criterion for measuring the performance of a robot
detection. If a robot was to detect other robots in regions where there are none it is going
to be making bad decisions and it might be better to not be able to detect any robots
at all. One example of such a bad decision would be when a robot is standing right in
front of the goal without any other robots around and instead of it shooting at the goal
it decides to move away because of a non existent robot it detected in front of itself.

The second most important criterion is the overall forward computation time a network
needs on the NAO to evaluate a single robot candidate. Due to having to evaluate about
30 frames per second, the time that can be spent on evaluating one single incoming image
is very limited. Robot detection definitely is not a top priority function compared to
other modules like generating motion trajectories, detecting the ball, the goal or field
lines. Therefore the time the robot detection needs should be kept at a minimum.

The third and last criterion that is going to be used for evaluation is the True Positive
Rate (TPR), also called Recall. After making sure that false positives and the runtime
are at a minimum the algorithm still needs to be able to correctly detect a robot as a
robot. Even though this is the least important factor it is still very desirable to maximize
it.

In order to be able to tell which networks are good enough to be considered for the robot
detection, several constraints were set each network had to fulfill.

For a network to be considered at all, the following limits were set:

• Maximum FPR: FPRmax = 10%

• Maximum runtime: tmax = 1.5 ms per candidate

• Minimum recall: Rmin = 70%

For a network to be considered a very good choice, it has to fulfill:

• Maximum FPR: FPRmax = 5%

• Maximum runtime: tmax = 0.75 ms per candidate

• Minimum recall: Rmin = 85%
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Assessing the quality of a network is done by using a rating function which calculates a
score for each network. Using the minimum requirements for a valid network FPRmax =
0.1, tmax = 1.5ms and Rmin = 0.7, the score is calculated as follows:

Score(net) =

{
(wfpr · FPRscore + wt · tscore + wr ·Rscore) · 100 C 6= 0
0 C = 0

(4.1)

FPRscore = max

(
0,

(
1− FPR

FPRmax

))
(4.2)

tscore = max

(
0,

(
1− t

tmax

))
(4.3)

Rscore = max

(
0,

(
1− 1−R

1−Rmin

))
(4.4)

C = FPRscore · tscore ·Rscore (4.5)

net: the NN that is being evaluated
wfpr: weight for the FPR-score
wt: weight for the runtime-score
wr: weight for the recall-score
FPR: FPR achieved by net
t: runtime achieved by net
R: recall achieved by net
C: a control variable to check whether any score equals 0

By using the C variable the function makes sure that as soon as a network does not achieve
the minimum requirements the score equals 0. If the network does fulfill the minimum
requirements, the score will be a number between 0 and 100, 100 being the best score
obtainable. By first calculating a score for each criterion the function determines how
well a network achieves within the bounds of that criterion. Using the weights wfpr, wt

and wr allows to adjust how much influence each criterion has on the final score. For the
course of this thesis the weights were chosen as:

• wfpr = 0.6

• wt = 0.3

• wr = 0.1

This is a choice that was made to represent the importance of the criteria mentioned
before. If in hindsight, it is decided that the runtime was more important than the FPR
after all, these weights can be set accordingly and the networks can be reevaluated.
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4.3 Measures against Overfitting

As described in 3.6 overfitting is a common problem that can have negative effects on the
results of a classifier. In order to prevent this from happening there are several methods
that can be implemented.

One of these methods was already hinted at in figure 3.17. At the dip of the validation
error the figure states “stop training here”. This describes one common way of preventing
overfitting. By simply stopping the training when the validation error stops improving
the network can be kept in a state where the overfitting did not have an effect on the
networks generalization capabilities yet. This method was also used for this thesis. As
described in 4.1.1 the script that was used to validate the training of the different networks
checks every snapshot of the network that was saved during training. By then choosing the
iteration where the network achieved the best results on the validation set, it is made sure
that overfitting is kept at a minimum. Looking at figure 4.1 it is easy to see that for this
example the validation accuracy reaches it’s peak at about 1000 iterations. Afterwards
it drops slightly and then stagnates for the rest of the training. For this case the said
validation script picked the model saved at iteration 1000 and marked this for further use.

Making use of a five-fold cross validation also makes sure that the training does not overfit
to a certain data split. Since every data point is part of the training set four times and
part of the validation set once the results are not biased towards a single split.

By using a test set for a final evaluation which consists only of data the classifier has not
seen before and which was collected under different circumstances than the training and
validation data, the chance of overfitting is further decreased.

There are also other methods of avoiding overfitting like regularization and dropout, both
of which could further improve the classification results. However, due to these methods
being complex an investigation did not fit into the scope of this thesis.
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4.4 Feature Calculation

In order to be able to determine whether a candidate image contains a robot or not a
classifier needs to learn how to differ between robot and non-robot images. The way this
is achieved is by extracting features from the images that describe the characteristics of
robot and non-robot images which are then used as an input for the classifier. One such
feature could for example be the most common Y-value in an image. Since the NAO
robots are mostly white and gray, an image holding a NAO will consist of a different
spectrum of Y-values than a non robot image. Due to the resource constraints on the
NAO the final selection of features should only contain such features that differentiate
well between robot and non-robot images and require low computation costs.

Finding the appropriate features was done in three steps:

1. Extracting a pool of features to choose from

2. Determine which features provide the best classification results

3. Select a set of features and test the overall runtime

4.4.1 Standardization

A standardization algorithm is used for insuring that no feature dominates the others by
having a higher range of values. The way this is done is by calculating the mean µ and
the standard deviation σ for each feature in the training set[7]. Applying the formula

Xstd =
X − µ
σ

(4.6)

on each feature X, the features are scaled to zero-mean and a standard deviation of one.
Figure 4.2 demonstrates an exemplary application of the standardization.

The mean and the standard deviation of each feature in the training set has to be remem-
bered so it can be applied for scaling the features in the validation and training set in the
same way. This is done by writing the values to a JSON file which can then be read and
applied when necessary. A sample file can be viewed in A.3.
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Figure 4.2: Two features before and after standardization. In (a) feature 1 dominates
feature (2) due to it’s much larger value range.

4.4.2 Feature Extraction

A large amount of features was extracted so the selection algorithms have many features
to choose from. First the following intermediate features were calculated:

• Histogram of Y-values

• Gradients in y-direction

• Gradients in x-direction

• Histogram of gradients in y-direction

• Histogram of gradients in x-direction

• Ten most common Y-values

• Ten most common gradients in y-direction

• Ten most common gradients in x-direction

• Magnitude of the Fourier-Transform

• Phase of the Fourier-Transform
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Then variance and entropy were calculated for each of the above. The formula for variance
is given in 2.1. Entropy was calculated as follows:

Let F be the set of values of an intermediate feature.

H(F ) = −
n∑

i=1

p(xi) · log2(p(xi)) (4.7)

p(xi) =
a(xi)

n
(4.8)

H(F ): entropy of a set F
xi: a single value from F
p(xi): the probability of occurrence of xi
n: amount of values in F
a(xi): occurrences of xi in F

The following features were calculated as an addition to the 20 features resulting from
the above:

• Mean of all Y-values in image

• Mean of the ten most common Y-values

• Mean of the ten most common gradients in y-direction

• Mean of the ten most common gradients in x-direction

• Spectral entropy

Where the formula used for calculating the mean is:

µ(F ) =

∑n
i=1 xi
n

(4.9)

µ(F ): mean of a set F

Spectral entropy is a feature based on the Fourier-Transform of the image. It is calculated
in three steps[28]:

1. Calculate the Power Spectral Density (PSD) P̂ for all Y-values yi in the Y-channel
of an image using their Fourier-Transform X(yi):

P̂ (yi) =
1

N
· |X(yi)|2 (4.10)

N : amount of Y-values in image
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2. Obtain the power spectral density distribution pi for each yi by normalizing P̂ (yi):

pi =
P̂ (yi)∑N
i=1 P̂ (yi)

(4.11)

3. Using the formula for entropy 4.8 on the result P = [p1, p2, ..., pN ] yields the spectral
entropy S(P ):

S(P ) = −
n∑

i=1

pi · log2(pi) (4.12)

Combining all features results in a total of 25 features which need to be evaluated.
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4.4.3 Feature Selection

For evaluating the features two programs were written which automatically choose those
features that have a positive impact on the classification. A NN with 10 hidden neurons
and ReLU activation function was used as the classifier for the feature selection.

The algorithms evaluate the used features by calculating a score from the achieved FPR,
recall and accuracy. The calculated score is bound to the interval [0, 1], 0 being the worst
score and 1 the best.

Fscore = 0.5 · (1− FPR) + 0.3 ·Recall + 0.2 · Accuracy (4.13)

As is obvious from equation 4.13 the FPR is weighed the highest, followed by recall and
accuracy. This is done to account for the importance of a very low FPR for a successful
robot detection. For every evaluation the NN was trained and tested ten times. The score
was then calculated on the averaged results.

The first algorithm applies a feature reduction. It does this by starting with a NN trained
on the full set of features. It then calculates the score for the classification result and
retrains the classifier with one feature less. If the resulting score does not drop by more
than 0.01, the feature is marked for removal and the program proceeds to check the
next feature. If the score does however drop by more than 0.01 the feature is marked as
necessary before moving on.

Algorithm 1 Feature reduction

Input:
features . A list of all features
classifier . The used classifier

1: result← classifier.train and test 10 times(features)
2: reference score← evaluate(result)
3:

4: for each feature in features do
5: features.remove(feature)
6: result← classifier.train and test 10 times(features)
7: score← evaluate(result)
8: if score < reference score− 0.01 then
9: feature.significant← False

10: else
11: feature.significant← True
12: end if
13: features.add(feature)
14: end for

After the program finishes a log is written which contains all the features flagged as
significant.
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The second algorithm works the other way around. It starts training the classifier with
only one of the 25 features at a time. The feature which scores the highest is then
remembered and will be kept for the second training round. In the second round it adds
one of the remaining features to the one that scored best in the first round and again
checks which feature achieves the highest score. The procedure is repeated until either
all features were checked or no feature improves the score any further.

Algorithm 2 Feature picking

Input:
features . A list of all features
used features . An empty list
classifier . The used classifier

1: done← False
2:

3: while done 6= True do
4: max score← 0
5: best feature← 0
6:

7: for each feature in features do
8: used features.add(feature)
9: result← classifier.train and test 10 times(used features)

10: score← evaluate(result)
11:

12: if score > max score then
13: max score← score
14: best feature← feature
15: end if
16:

17: used features.remove(feature)
18: end for
19:

20: if best feature 6= 0 then
21: used features.add(best feature)
22: features.remove(best feature)
23:

24: if features.empty() then
25: done← True
26: end if
27: else
28: done← True
29: end if
30: end while
31: return used features
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Both algorithms were run 10 times. Evaluating the written logs showed that reduction
algorithm chose an average of 6.7 features with a minimum of 5 and a maximum of 14. The
picking algorithm picked 11.8 features at average with a minimum of 5 and a maximum
of 18. The varying amounts of features picked can be explained by the fluctuations in
the averaged classification results. Since training a NN is non-deterministic the outcome
always varies slightly which is why it is important to run the algorithms multiple times.
The higher average for the picking algorithm can be explained by it accepting another
feature even if it only slightly improves the score, whereas the reduction algorithm uses a
fixed threshold.

Table 2 lists how often each feature was picked by each algorithm and overall. Features
which were not chosen at all are not listed.

Feature Picking Reduction Overall

Variance histogram of gradients x 7 9 16
Variance histogram of gradients y 10 6 16
Spectral entropy 5 10 15
Variance 10 most common Y-values 10 4 14
Variance gradients y 6 4 10
Variance gradients x 6 4 10
Mean 10 most common gradients y 9 0 9
Entropy gradients y 3 4 7
Entropy fourier magnitude 6 0 6
Entropy histogram of Y-values 5 0 5
Variance fourier magnitude 5 0 5
Variance histogram of Y-values 3 1 4
Entropy gradients x 1 3 4
Entropy 10 most common Y-values 4 0 4
Variance 10 most common gradients y 4 0 4
Entropy histogram of gradients x 4 0 4
Entropy 10 most common gradients y 3 0 3
Variance 10 most common gradients x 1 1 2
Entropy histogram of gradients y 2 0 2
Mean 10 most common Y-values 2 0 2
Mean of Y-channel 1 0 1

Table 2: Feature selection results

Based on these results three different combinations of features were chosen and tested.
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Combination 1:

1. Variance histogram of gradients x

2. Variance histogram of gradients y

3. Variance gradients x

4. Variance gradients y

Combination 2:

All features from Combination 1 with spectral entropy as a fifth feature.

Combination 3:

All features from Combination 1 with variance of the 10 most common Y-values as a fifth
feature.

The reason for choosing the combinations like this is that the two features which gave
the best overall results, the variance of the histograms of gradients in x and y direction,
depend on calculating the gradients in x and y direction first. Calculating the variance of
those gradients only adds very little computing time which is why Combination 1 consists
of those four features. Combination 2 and 3 add the features which ranked third and
fourth in the evaluation. Those two features need extra calculations which is why it is
especially interesting to see how the classification results change when using one or the
other or even none of the two.

Combination 1 Combination 2 Combination 3 All features

False Positive Rate 11.07% 8.3% 11.05% 8.2%
Recall 88.4% 88.5% 90.8% 89.2%
Accuracy 89.3% 90.9% 90.3% 91.2%
Score 0.8885 0.9058 0.8978 0.909

Table 3: Results of testing different feature combinations

Table 3 shows the results of the different combinations. In addition the last column also
lists the results when all 25 features are being used. Again, the shown outcomes are the
averages of training and testing ten times on varying train-validation splits.

As can be seen the best score is achieved when using all 25 features. Combination 1 does
however score comparably well while using only four features. This demonstrates that
there is a lot of redundancy in the information provided by the 25 features. The score
of Combination 2 shows that using spectral entropy results in about 3% less FPR and a
score which gets very close to using all 25 features. The feature added for Combination
3 does not noticeably affect the FPR but rather increases recall and accuracy slightly.
Since achieving a low FPR is the most important criteria for a successful robot detection,
Combination 2 was selected for further testing.
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4.5 Feature-based Classification using Neural Networks

In order to evaluate the general influence the parameters outlined in 3.4.4 have on clas-
sification results and runtime, the following sections will show the results of all networks
tested for the feature-based classification. First it will present the cross-validation results
which will be used to determine which combination of network parameters promise the
best results. This will be followed by evaluating the five best parameter combinations on
the test set.

The following sets of parameters were tested:

• Activation functions = [Identity, Sigmoid, TanH, ReLU, Leaky ReLU]

• Amount of hidden neurons = [1, 2, 4, 6, 8, 10, 20, 50, 100]

• Input image sizes = [9x14, 10x16, 11x17, 12x19, 13x20, 14x22, 15x24, 16x25, 17x27,
18x28, 19x30, 20x31, 21x33, 22x35, 23x36, 24x38, 25x39]

For each possible combination of these parameters a network was trained. This results in
a total of 765 different NNs.
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4.5.1 Evaluation of used Features

Features were already evaluated in table 3 with regard to their FPR and recall but so
far no statement regarding the runtime was made. In figure 4.3 each blue dot represents
a single NN’s cross-validation results. As can be seen the plots reflect the results from
table 3. Using the spectral entropy feature in combination 2 does allow for some networks
to achieve a FPR of about 3% better than without that feature. For reasons of compa-
rability with CNNs the forward time used for the plots includes feature calculation as
well. It is easy to see that the trade off that is made for a higher FPR is a much higher
computation time resulting from calculating the Fast Fourier Transform (FFT) needed
for the spectral entropy feature. Networks using this feature need between 0.9 and 2.25ms
whereas networks without the feature only need 0.5 to 0.95ms.
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Figure 4.3: Cross-validation results for feature combination 1 and 2

Since no network using combination 1 was able to achieve a FPR under 10% which was
set as a minimum requirement in 4.2, only combination 2 will be taken into account for
further evaluation. The complete results with regard to all three evaluation criteria for
both combinations can be viewed at A.4 and A.5.
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4.5.2 Evaluation of Activation Functions

According to [10] ReLU is the best choice for an activation function, Sigmoid should
never be used and TanH should be expected to score worse than ReLU. In order to find
out whether this recommendation is true the networks were tested using the different
activation functions explained in 3.7.

The results that were achieved can be viewed in figure 4.4.
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Figure 4.4: Results of all 765 tested NNs with regard to the used activation functions

In terms of FPR the ReLU, leaky ReLU and TanH functions scored similar whereas
sigmoid and identity scored much worse.

The same effect can be seen in plot (b). Again the ReLU, leaky ReLU and TanH functions
all achieved comparable recall rates while sigmoid and identity functions produced lower
scores. All five did however manage to obtain very high recall rates.

Looking at the average runtime the identity function proved to be the fastest. All other
four functions only showed neglectable differences.

As recommended by [10] the ReLU function proved to be one of the best functions. It
did however not turn out to be much better than the leaky ReLU or TanH functions.
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In general any of these three functions can be chosen and will be able to produce good
results.

4.5.3 Evaluation of Neuron and Hidden Layer Count
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Figure 4.5: Results of all 765 tested NNs with regard to the used neuron count

Figure 4.5 demonstrates the effect of using different amounts of neurons in the hidden
layer. While it is possible to see that increasing the amount of neurons leads to a lower
FPR and slightly higher recall, the effect is better visible when looking at only those
networks which use ReLU activation as shown in figure 4.6. The difference between the
plots is caused by the networks using identity and sigmoid activation. These networks
cannot make use of the higher amount of neurons as can be seen in A.11 and A.12.

Figure 4.6 shows that the higher the amount of neurons in the hidden layer the better the
results. While recall only improves slightly with rising neuron count the FPR is reduced
significantly. It is however also visible that the reduction in FPR saturates in such a way
that increasing beyond 100 neurons would most likely not reduce the FPR much further.
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Figure 4.6: Results with regard to the used neuron count for NNs using ReLU activation

Regarding the runtime, increasing the amount of neurons does not appear to increase the
computation time. The results for each neuron count vary approximatively between 1.2
and 2.1 ms. As the next section will show, the runtime is much more dependent on the
input size than the neuron count.

Since a high neuron count proves to increase recall and decrease FPR, while having almost
no effect on the runtime, it is safe to say that using a high amount of neurons is a good
choice.

Due to the already very high computation times the addition of a second hidden layer
was not investigated any further.
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4.5.4 Evaluation of Input Dimensions
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Figure 4.7: Results of all 765 tested NNs with regard to the used input size

The results with regard to the input image size is presented in figure 4.7. These results
resemble what was already observed in the previous sections. The biggest influence on the
classification results (FPR and recall) are caused by the amount of hidden neurons and
the used activation functions. Image size however seems not to have much of an effect on
those two criteria. Recall stays at about 90% for all of the different sizes. FPR also does
not seem to be influenced by the image size much. It does increase a little around the
very low input sizes but all together the FPR values stay in similar intervals.

The figure also shows that the input size has a large influence on the runtime. As can
be seen, the time necessary to evaluate one robot candidate grows strongly with a rising
amount of pixels to be evaluated. There are also a few dips visible at e.g. 16x25 and
20x31 where the time needed suddenly drops, which could be caused by how the compiler
optimizes the code or how the processor handles the computation.
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4.5.5 Results

The cross-validation results have shown that it is best to use either one of the three
activation functions ReLU, Leaky ReLU or TanH with about a 100 neurons in the hidden
layer. Since using a low resolution input image improves the runtime while not effecting
the classification results by much, it is also a good choice to keep the input size low.

In order to provide a choice of actual networks which can be used on the NAO the set
of tested networks was reduced to only contain those networks which are pareto-optimal4

and fulfill the minimum requirements set in 4.2. The remaining networks are listed in A.13
sorted by their achieved score. Plots showing the results of all pareto-optimal networks
can be found at A.7 and A.8.

Taking the five best scoring networks from the list of pareto-optimal networks at A.13,
retraining them on the complete training and validation data and finally testing them on
the test set yielded the following results:

Activation Neurons Input FPR[%] Recall[%] Avg. time[ms] Score

ReLU 20 12x19 7.44 90.65 1.2 28.2433
TanH 100 11x17 7.64 92.07 1.28 25.9167
TanH 50 14x22 7.64 90.65 1.43 22.4433
Leaky ReLU 100 12x19 8.47 90.45 1.22 21.5967
Leaky ReLU 50 12x19 8.47 90.45 1.2 21.9967

Table 4: Results of evaluating the five highest scoring NNs on the test set

When using the weights and requirements as described in 4.2 the network with the best
result is a network using a ReLU activation function, 20 neurons in it’s hidden layer and
an input size of 12x19 as marked in the table above.

Even though this network is the best scoring network the results it produces are only
mediocre. A recall of about 90% is very good but it is much less important for a robot
detection than the FPR and the runtime. With a measured runtime of 1.2 ms at average
and 1.7 ms at maximum (A.13) the network is close to the upper bounds of viable runtimes.
At about 8% the FPR is also still considerably high which could lead to problems during
soccer matches.

Using the best network’s measured runtimes of 1.22 ms at average and 1.70 ms at max-
imum with equations 2.3 and 2.4 it is possible to calculate an estimate of the overall
runtime for the algorithm.

• Average time estimate ≈ 2 ms

• Worst-case time estimate ≈ 10.5 ms

The worst-case time was calculated assuming that the maximum allowed candidate count
is five. For the average time an average of 1 candidate per image is assumed.

4With regard to this problem a network is pareto-optimal when there is no other network which
improves on FPR, recall and runtime at the same time.
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4.6 Convolutional Neural Networks

Due to the amount of additional influences on the classification results of CNNs as outlined
in 3.5.3, it wasn’t possible to train all possible combinations of the parameters that needed
evaluating. So unlike the 765 tested NNs, the evaluation of CNNs required several different
sets of parameter combinations. Again, first the network parameters were assessed by
using the cross-validation results and then the five highest scoring parameter combinations
were evaluated on the test set.

4.6.1 Evaluation of Network Structures

Since the computational resources on the NAO are very limited only small CNNs could
be tested. The way this was done was to start with the smallest possible CNN-structure,
a convolutional layer followed by a fully-connected layer, and then gradually enlarging
the networks until they get too complex to run on the NAO.

Doing this the following structures were created:

• CF

• CAF

• CMF

• CAMF

• CFF

• CAFF

• CMFF

• CAMFF

The notation used here describes the sequence of layers used in the network architecture.
Each layer is symbolized by letters as follows:

• C: Convolutional layer

• CA: Convolutional layer using an activation function (ReLU only)

• M: Max pooling layer

• F: Fully-connected layer

So a CMFF-network consists of a convolutional layer followed by a max pooling layer and
two fully-connected layers.
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Each of these CNN-architectures was then tested on these parameter sets:

• Strides = [1]

• Amount of convolutional kernels = [1, 10, 20]

• Size of convolutional kernels = [3x3, 5x5, 7x7]

• Amount of hidden neurons = [50]

• Activation functions = [ReLU]

• Input image sizes = [18x28]

While converting the networks for the tiny-dnn c++ library a problem arose for the
structures using max pooling layers. Networks using odd input width or height could not
be converted due to different implementations in the caffe and tiny-dnn libraries. For this
reason the input was chosen to be 18x28 for this analysis.
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Figure 4.8: CNN results with regard to the used network structure
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The results of the structure analysis are shown in figure 4.8. Looking at plot (a) it is
visible that the CAF, CF and CMF structures lack behind the other structures in terms
of FPR. The CAMF structure was able to achieve low FPR but in some cases this was
coupled with a very low recall. This happens when a network tends to classify most
images as background. These four structures all share the common characteristic that
they lack a second fully-connected layer.

When investigating the other four architectures the classification results turn out to be
much more stable. With regard to FPR they are very similar except that CFF and
CMFF structures also include some lower scoring networks than CAMFF and CAFF.
As can be seen in the recall plot (b) CAMFF and CAFF also achieved a slightly higher
recall than CFF and CMFF. The drawback of the CAMFF and CAFF architectures
becomes apparent in plot (c). Their runtime is much higher than that of CFF and
CMFF, especially the CFF-structure was able to maintain low runtimes but still achieve
very good classification results. This is also visible in A.15 which shows that the three
highest scores were all gained by CFF networks and that it is the only structure which
managed to stay within the bounds of the minimum requirements for all tested networks.

4.6.2 Evaluation of Strides

Using the CFF structure the following sets of parameters were tested:

• Strides = [1, 2, 3]

• Amount of convolutional kernels = [1, 2, 5]

• Size of convolutional kernels = [3x3, 5x5, 7x7]

• Amount of hidden neurons = [50]

• Activation functions = [ReLU]

• Input image sizes = [18x28]

The results in figure 4.9 show that the FPR increases when the stride increases. This
is expectable as the increase in stride means that less information is extracted from the
images. It is hard to tell how exactly the stride impacts the recall, since there is no clear
change visible. Looking at the median it is possible to speculate that the recall increases
slightly with increasing stride but it would need more tests to validate this. Since all three
strides provided good recall any stride would be an acceptable choice with regard to this
criterion.

The runtime plot (c) shows that runtime gets better when the stride is increased. Since
FPR is weighed higher than the runtime in the scoring function the three best scoring
networks all use a stride of 1 as can be seen in A.17. Based on this, testing was continued
using a stride of 1.
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Figure 4.9: CNN results with regard to the used stride

4.6.3 Evaluation of Activation Functions

For evaluating the different activation functions, combinations of the following parameter
sets were tested while using a stride of 1 and the CFF network structure :

• Amount of convolutional kernels = [1, 2, 5, 10]

• Size of convolutional kernels = [3x3, 5x5, 7x7]

• Amount of hidden neurons = [10, 20, 50]

• Activation functions = [ReLU, Leaky ReLU, TanH, Sigmoid, Identity]

• Input image sizes = [17x27]

The results of the tested CNNs are shown in figure 4.10. Just like in 4.5.2 the activation
functions leaky ReLU, ReLU and TanH score very similarly on all three criteria. When
comparing the results of the sigmoid function here with those from 4.5.2, the function’s
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classification results are much closer to the top three functions. Even though the identity
function’s runtime turns out to be much better than the other’s, it is evident that for
CNNs it is not a viable choice due to it’s low FPR and recall.
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Figure 4.10: CNN results with regard to the used activation function

Looking at figure 4.10 and the list of networks at A.19 it can be argued that either of
the functions leaky ReLU, ReLU, Sigmoid or TanH is be feasible but due to the high
amount of parameters only one function could be chosen for further testing. Based on
the recommendation in [10] and the fact that the highest scoring function in A.19 used a
ReLU function, this function was chosen for further testing.
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4.6.4 Evaluation of the Kernel Count, Kernel Size, Neuron Count and Input
Dimensions

For the evaluation of the amount of convolutional kernels, their size, the hidden neuron
count and the input size a large set of networks was created using the CFF structure with
ReLU activation, a stride of 1 and the following sets of parameters:

• Amount of convolutional kernels = [1, 2, 5, 10, 20, 50]

• Size of convolutional kernels = [3x3, 5x5, 7x7]

• Amount of hidden neurons = [10, 20, 50]

• Activation functions = [ReLU]

• Input image sizes = [14x22, 15x24, 16x25, 17x27, 18x28, 19x30, 20x31, 21x33, 22x35,
23x36, 24x38, 25x39]

All combinations together result in a total amount of 648 CNNs.

Unfortunately during evaluation the created networks showed some problems. As can be
seen in A.20 the cross-validation results of the tested networks are arranged in six “steps”.
The reason for these steps is that some networks failed to train in such a way that they
will simply label every input as background. This causes for these networks to achieve
0% FPR and 0% Recall. When now used for the cross-validation the networks which
failed to train properly drag down the averaged classification results. Thus the steps in
A.20 represent such combinations of network parameters which included 1, 2, 3, 4 or 5
networks which failed to train and were averaged during cross-validation. Interestingly
this only happened for such combinations where the amount of kernels was much larger
than the amount of hidden neurons.

In order to avoid that this problem has an effect on the following evaluations all those
networks which showed that at least one of it’s cross-validation elements failed to train
were cut from the data. This also means that some of the combinations of the parameter
sets above were not evaluated. In total 148 networks were cut such that 500 networks
remained and were evaluated in the following sections. The remaining networks can be
viewed at A.21. All networks that were cut are listed at A.23.
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Evaluation of the Kernel Count
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Figure 4.11: CNN results with regard to the amount of used convolutional kernels

When increasing the number of kernels the classification results of the networks tend to
get better as can be seen from (a) and (b). However, starting from 20 kernels and up the
results are decreasing again. Due to the large increase in network parameters when using
larger amounts of kernels, the networks might start to overfit the data from 20 kernels
upwards.

The number of kernels also has a high influence on the runtime as can be seen in (c).
Increasing the kernel count quickly leads to a long runtime which suggests to keep the
kernel amount as low as the classification results allow it.

Since the classification results decreased when using more then 10 kernels and the runtime
is also highly dependent on this parameter, the amount of kernels should be kept at 10
or below. Looking at the list of networks in A.24 supports this suggestion as well. The
highest scores were achieved when using a kernel count of 1 to 10.
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Evaluation of the Kernel Size

3x3 5x5 7x7
Kernel size

4

6

8

10

Fa
ls

e 
po

si
tiv

e 
ra

te
 [%

]

(a) FPR

3x3 5x5 7x7
Kernel size

72.5

75.0

77.5

80.0

82.5

85.0

R
ec

al
l [

%
]

(b) Recall

3x3 5x5 7x7
Kernel size

0.8

1.0

1.2

1.4

Av
er

ag
e 

tim
e 

[m
s]

(c) Computation times

Figure 4.12: CNN results with regard to the used kernel size

As shown in figure 4.12 (a) the FPR worsens with rising kernel sizes. The recall however
rises slightly with larger kernel sizes.

The runtime of the network seems not to be significantly influenced by the kernel size.

Looking at the results of the tested networks in A.24 shows that most of the better scoring
networks use 3x3 or 5x5 kernels. 7x7 kernels do provide some good results as well but
generally score lower due to lower FPRs.
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Evaluation of the Neuron Count
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Figure 4.13: CNN results with regard to the used neuron count

Increasing the hidden neuron count also has a positive effect on both FPR and recall.

The runtime increases with the neuron count. Even though the impact on the runtime
is high, the influence on the classification results proves to outweigh this for the tested
neuron counts. In general the higher neuron counts achieved better scores as visible in
A.24.
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Evaluation of the Input Dimensions
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Figure 4.14: CNN results with regard to the used image size

Figure 4.14 presents the results of the networks with regard to the input dimensions. As
visible in the first plot the FPR slightly decreases with rising input dimensions. This can
be credited to the increased information contained in larger images. The recall stays the
same for almost all image sizes.

The input dimensions also have an influence on the runtime. When increasing the input
dimensions the runtime also increases. This influence is however not as big as the ones
caused by the amount of kernels or the neuron count.

The results in A.24 show that there is no single best input size. In combination with other
parameters all of the tested sizes were able to achieve good scores.
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4.6.5 Results

Summarizing the last sections the following conclusions can be drawn about the different
parameters.

• Of the tested CNN-architectures the CFF structure yields the best compromise
between good classification results and runtime.

• A stride of 1 proved to yield the highest scores. If the runtime’s influence on the
score was weighed higher, larger strides would become more viable too.

• Either leaky ReLU, ReLU, Sigmoid or TanH can be used as activation function.

• The amount of kernels should be kept low due to its high impact on runtime and
the probability of overfitting. Preferably it should be kept between 1 and 10.

• The 3x3 kernel size achieved the best results when compared to 5x5 and 7x7.

• A higher number of hidden neurons promises better classification results. This will
have it’s limit but from the tested set 50 neurons provided the best results.

• It was not possible to find a rule for the input size. Both high and low sizes were
able to score well.

As can be seen in A.24, most of these conclusions are also represented by the five highest
scoring networks. All of these networks use a number of kernels smaller or equal to 10.
Four out of five use a 3x3 kernel. All five use 50 neurons and both high and low input
dimensions were able to achieve high scores.

The results of the evaluation of these five networks on the test set is shown in table 5.

Act. Kernels K. Size Neurons Input FPR[%] Recall[%] Avg. time[ms] Score

ReLU 5 3 50 23x36 3.51 86.38 0.99 54.6
ReLU 2 3 50 24x38 3.93 87.6 0.95 53.28
ReLU 2 3 50 18x28 4.96 87.8 0.89 48.37
ReLU 10 5 50 16x25 4.75 88.21 0.98 47.97
ReLU 5 3 50 16x25 6.2 88.21 0.92 40.47

Table 5: Results of evaluating the five highest scoring CNNs on the test set

While the first network in the table provides the lowest FPR and the highest overall score,
the third network might be a good choice too if the first proves to be too slow, especially
due to it’s lower maximum runtime measured at 1.29 ms (A.24).

Comparing the results on the test set in table 5 and the cross-validation results in A.24
shows that the first two networks from table 5 were able to improve their score by a
general improvement in recall. The last three networks however all scored worse on the
test set due to a drop in FPR. All five results show that the networks generalize well
enough to be able to classify previously unseen data.
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Using the best network’s measured runtimes of 0.99 ms at average and 1.66 ms at max-
imum (A.24) and equations 2.3 and 2.4 it is possible to estimate the overall runtime for
the algorithm.

• Average time estimate: ca. 1.7 ms

• Worst-case time estimate: ca. 10.4 ms

Like with the feature-based classification, the worst-case time was calculated assuming
that the maximum allowed candidate count is five. For the average time an average of 1
candidate per image was assumed.
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5 Conclusion and Outlook

The goal of this thesis was to find an implementable solution for a robot detection on
the NAO robotic system. While comparing the two approaches of feature-based NN and
CNN classification it was possible to observe that both provide a feasible solution for
implementation on the NAO.

Activation Neurons Input FPR[%] Recall[%] Avg. time[ms] Score

ReLU 20 12x19 7.44 90.65 1.2 28.2433
TanH 100 11x17 7.64 92.07 1.28 25.9167
TanH 50 14x22 7.64 90.65 1.43 22.4433
Leaky ReLU 100 12x19 8.47 90.45 1.22 21.5967
Leaky ReLU 50 12x19 8.47 90.45 1.2 21.9967

Table 6: Results of evaluating the five highest scoring NNs on the test set

Act. Kernels K. Size Neurons Input FPR[%] Recall[%] Avg. time[ms] Score

ReLU 5 3 50 23x36 3.51 86.38 0.99 54.6
ReLU 2 3 50 24x38 3.93 87.6 0.95 53.2867
ReLU 2 3 50 18x28 4.96 87.8 0.89 48.3733
ReLU 10 5 50 16x25 4.75 88.21 0.98 47.97
ReLU 5 3 50 16x25 6.2 88.21 0.92 40.47

Table 7: Results of evaluating the five highest scoring CNNs on the test set

Looking at table 6 and 7 it is however apparent that the results achieved by the feature-
based approach provided much lower scores than the CNN ones. One problem with the
feature-based approach is that the features have to be created and evaluated manually.
The CNNs can simply learn them during their training. The results by no means show
that the CNN approach has to be the better method. Since the basic NNs are much
faster than the CNNs when disregarding the feature-calculation time, finding the correct
features which produce good classification results while staying low on computational cost
could show that the feature-based approach is better after all. With the features found
and tested and the evaluation criteria used during this thesis however, CNNs were proven
to be superior in terms of both runtime and classification outcome.

The CNN results are likely to be improvable as well. It is not possible to rule out that
the classification approaches are not overfitting the given data at all. Using methods like
regularization and dropout could further improve the classification results. The parameter
search could also be extended to find parameter combinations which work even better than
the ones tested.

With the classification methods provided by this thesis the next step that has to be taken
is to actually make use of the detected robots. So far, there is no means to calculate the
position of the detected robots on the field. Also, playing strategies which make use of the
new information have to be implemented. Another important point is that this detection
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does not separate between friend and foe, so a jersey detection is another necessary part
to make full use of the provided robot detection.

Another factor worth reconsidering is the candidate generation implemented during this
thesis. While it provides reasonable results it still offers much room for improvement.
Especially the dependency on the field color detection is a big problem because it makes
the detection prone to produce erroneous results when the playing conditions are not
optimal.

In summary this thesis proves that both the feature-based approach and the CNNs are
viable solutions for a successful robot detection on the NAOs. It provides the basis for
further examinations and improvements through the evaluated network parameters and
by supplying tools like automated creation and testing of neural networks. However, there
are still many things that have to be done before the robot detection can be used to it’s
full extend during RoboCup games.
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[12] Nathapon Olaf Lüders, Object Localization on the Nao Robotic System Using a
Deep Convolutional Neural Network and an Image Contrast Based Approach, PhD
thesis, Technical University of Hamburg, Hamburg, 15.08.2016.

http://doc.aldebaran.com/2-1/family/robots/video_robot.html
http://doc.aldebaran.com/2-1/family/robots/video_robot.html
https://github.com/bhuman/BHumanCodeRelease/raw/master/CodeRelease2016.pdf
https://github.com/bhuman/BHumanCodeRelease/raw/master/CodeRelease2016.pdf
http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.nvidia.cn/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf
https://www.nvidia.cn/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf
http://cs231n.github.io/neural-networks-1/


REFERENCES 67

[13] E.-I. Osawa, H. Kitano, M. Asada, Y. Kuniyoshi, and I. Noda,
Robocup: the robot world cup initiative.

[14] Pascal Loth, Implementierung und evaluation einer robusten echtzeitkantende-
tektion auf dem humanoiden nao-robotiksystem: Bachelor thesis. http://www.

hulks.de/_files/BA_Pascal-Loth.pdf, 19.10.2015. Last visited: 02.04.2017.

[15] Pedregosa et al., Scikit-learn: Machine learning in python, 2011.

[16] F. Poppinga, Implementation and Evaluation of Audio Based Methods for Robust
Inter-Robot Communication, project thesis, Helmut Schmidt Universität, Hamburg,
29.07.2016.

[17] RoboCup Federation, A brief history of robocup. http://www.robocup.org/

a_brief_history_of_robocup. Last visited: 15.03.2017.

[18] RoboCup Technical Committee, Robocup standard platform league (nao)
rule book. http://www.tzi.de/spl/pub/Website/Downloads/Rules2017.pdf,
01.11.2016. Last visited: 15.03.2017.

[19] P. Ross, Alphago wins final game in match against champion go
player. http://spectrum.ieee.org/tech-talk/computing/networks/

alphago-wins-match-against-top-go-player, 2016. Last visisted: 22.03.2017.

[20] S. J. Russell and P. Norvig, Artificial intelligence: A modern approach,
Prentice-Hall series in artificial intelligence, Pearson, Boston, 3. ed., internat.
ed. ed., 2010.

[21] T. Schattschneider, Formbasierte ballerkennung in echtzeit auf dem hu-
manoiden nao-robotiksystem: Bachelor thesis. http://www.hulks.de/_files/BA_
Thomas-Schattschneider.pdf, 23.11.2015. Last visited: 02.04.2017.
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A Appendix

A.1 Configuration File for Candidate Generation Algorithm

1: {
2: ”max region grow factor” : 4,
3: ”max region shrink factor” : 4,
4: ”min region length” : 10,
5: ”min robot width” : 30,
6: ”min robot height” : 40,
7: ”max robot width” : 400,
8: ”max robot height” : 480,
9: ”max variance” : 5,

10: ”width tolerance factor” : 1.1,
11: ”height tolerance factor” : 4,
12: ”max amount candidates” : 5,
13: ”candidate width” : 18,
14: ”candidate height” : 24
15: }

A.2 Weight visualization of a convolutional layer using 20 ker-
nels of size 3x



APPENDIX 70

A.3 Example of a JSON file containing parameters for feature
standardization

1: {
2: ”train params”: {
3: ”params”: {
4: ”with mean”: true,
5: ”with std”: true,
6: ”copy”: true,
7: ”mean ”: [
8: 292.2449630369634,
9: 0.00019077969226122618,

10: 327.86514865674934,
11: 0.00016642968873380106,
12: 773447.6348630529
13: ],
14: ”n samples seen ”: 3003,
15: ”var ”: [
16: 58272.80106754024,
17: 1.950751976089696e-08,
18: 45365.95210733148,
19: 1.3941424456922264e-08,
20: 109856991651.29988
21: ],
22: ”scale ”: [
23: 241.3975995480076,
24: 0.00013966932290555774,
25: 212.9928452022074,
26: 0.00011807380936059556,
27: 331446.81572056154
28: ]
29: }
30: }
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A.4 Cross-validation results of all tested Neural Networks using
Feature Combination 1
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A.5 Cross-validation results of all tested Neural Networks using
Feature Combination 2
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A.6 Cross-validation results of all tested Neural Networks col-
ored by Activation Function
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A.7 Cross-validation results of all tested Neural Networks with
colored pareto-optimal Networks
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A.8 Cross-validation results of all pareto-optimal Networks
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A.9 Cross-validation results with regard to the used Neuron
Count for NNs using Leaky ReLU Activation
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A.10 Cross-validation results with regard to the used Neuron
Count for NNs using TanH Activation
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A.11 Cross-validation results with regard to the used Neuron
Count for NNs using Sigmoid Activation
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A.12 Cross-validation results with regard to the used Neuron
Count for NNs using Identity Activation
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A.13 List of all pareto-optimal Neural Networks

Activation Neurons Input FPR[%] Recall[%] Avg. time[ms] Max. time[ms] Score

Leaky ReLU 100 12x19 7.93 91.75 1.22 1.70 25.27
ReLU 20 12x19 8.14 90.61 1.20 1.70 24.03
TanH 50 14x22 7.56 90.85 1.43 2.50 22.99
TanH 100 11x17 8.22 92.28 1.28 1.74 22.50
Leaky ReLU 50 12x19 8.72 91.18 1.20 1.64 20.74
TanH 50 11x17 8.55 92.64 1.29 1.85 20.45
Leaky ReLU 6 12x19 8.97 90.61 1.19 1.97 19.25
TanH 6 11x17 9.05 92.97 1.31 1.59 17.16
TanH 6 12x19 9.34 90.93 1.19 1.52 17.14
TanH 8 11x17 9.34 93.41 1.26 1.75 16.56
TanH 6 13x20 9.92 91.54 1.19 1.62 13.86
ReLU 1 10x16 8.26 55.24 1.19 1.60 0
Identity 10 11x17 14.09 93.90 1.05 1.58 0
Identity 1 11x17 13.64 93.74 1.06 1.54 0
Identity 20 11x17 13.22 93.13 1.05 1.43 0
Sigmoid 20 11x17 12.23 93.94 1.27 1.93 0
Identity 2 11x17 13.60 93.70 1.05 1.67 0
Identity 8 11x17 13.88 93.82 1.04 1.39 0
Sigmoid 10 12x19 11.94 93.82 1.19 1.74 0
Identity 2 12x19 13.06 92.48 0.98 1.38 0
Identity 50 12x19 13.14 92.76 0.97 1.36 0
Sigmoid 6 12x19 11.57 92.85 1.20 2.00 0
Identity 8 12x19 13.14 92.93 0.97 1.36 0
Sigmoid 8 12x19 11.78 93.58 1.18 1.66 0
Identity 4 13x20 14.17 93.09 0.98 1.72 0
TanH 4 13x20 10.70 91.59 1.20 1.62 0
Identity 6 13x20 13.76 93.01 0.98 1.37 0
Sigmoid 100 14x22 13.10 94.07 1.42 2.12 0
Sigmoid 10 14x22 12.73 94.43 1.43 2.00 0
Identity 1 14x22 14.63 94.07 1.21 1.88 0
Sigmoid 20 14x22 13.43 94.07 1.42 1.89 0
Identity 2 14x22 14.50 93.94 1.20 1.71 0
Identity 8 14x22 14.75 94.27 1.19 1.78 0
Leaky ReLU 1 16x25 11.53 92.40 1.23 1.98 0
Sigmoid 1 16x25 11.32 92.68 1.24 1.76 0
TanH 1 16x25 11.28 92.44 1.24 1.66 0
Identity 20 16x25 12.07 93.17 1.07 1.68 0
Identity 2 16x25 12.02 93.13 1.09 1.70 0
Identity 4 16x25 11.90 93.01 1.07 1.69 0
Identity 50 16x25 11.61 93.09 1.08 1.59 0
Identity 6 16x25 12.15 93.29 1.07 1.47 0
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A.14 Cross-validation results of CNN Structure Analysis
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A.15 List of all Networks for CNN Structure Analysis

Structure Act. Kernels Size Neurons Input FPR[%] Recall[%] Avg. time[ms] Score
CFF ReLU 10 3 50 18x28 4.09 80.57 0.98 49.3833
CFF ReLU 20 3 50 18x28 3.97 81.18 1.04 49.1067
CFF ReLU 20 5 50 18x28 4.38 81.75 1.01 47.4367
CAMF ReLU 20 7 0 18x28 4.67 83.21 1.01 46.1833
CMFF ReLU 10 3 50 18x28 4.42 86.26 1.14 46.1
CFF ReLU 10 5 50 18x28 4.92 82.52 0.98 45.0533
CAMFF ReLU 10 3 50 18x28 3.8 87.03 1.42 44.4767
CAFF ReLU 10 3 50 18x28 4.59 87.52 1.22 43.9
CMFF ReLU 10 7 50 18x28 4.75 85.08 1.14 43.7267
CMFF ReLU 20 7 50 18x28 4.75 86.5 1.2 43
CAFF ReLU 20 3 50 18x28 4.42 88.05 1.35 42.4967
CAFF ReLU 10 7 50 18x28 4.96 86.63 1.17 42.3833
CFF ReLU 1 3 50 18x28 5.7 82.97 0.89 42.3233
CMFF ReLU 20 5 50 18x28 4.88 86.71 1.2 42.29
CAMFF ReLU 10 5 50 18x28 4.46 88.13 1.38 41.6833
CAMFF ReLU 20 7 50 18x28 4.59 89.19 1.46 39.6567
CAFF ReLU 20 5 50 18x28 5.12 87.93 1.29 39.4567
CAFF ReLU 20 7 50 18x28 5.17 86.95 1.27 39.23
CMFF ReLU 10 5 50 18x28 5.87 88.37 1.12 38.5033
CFF ReLU 20 7 50 18x28 5.99 82.93 1 38.37
CAF ReLU 20 7 0 18x28 6.61 83.29 0.83 38.17
CAMF ReLU 20 5 0 18x28 5.99 84.19 1.05 37.79
CAFF ReLU 10 5 50 18x28 5.54 86.87 1.23 37.7833
CAMFF ReLU 20 5 50 18x28 4.96 90.45 1.47 37.6567
CAMF ReLU 10 7 0 18x28 6.28 81.42 0.94 37.3267
CMFF ReLU 20 3 50 18x28 5.74 87.56 1.21 37.2133
CAF ReLU 20 5 0 18x28 6.94 84.39 0.86 35.9567
CAF ReLU 20 3 0 18x28 6.86 84.67 0.89 35.93
CAMFF ReLU 10 7 50 18x28 5.58 88.46 1.35 35.6733
CFF ReLU 10 7 50 18x28 6.69 84.07 0.96 35.35
CAF ReLU 10 5 0 18x28 7.6 83.01 0.77 33.3367
CAMF ReLU 20 3 0 18x28 6.57 82.07 1.09 32.8033
CAMF ReLU 10 3 0 18x28 7.02 82.36 0.96 32.8
CAFF ReLU 1 3 50 18x28 6.78 85.2 1.12 31.9867
CMFF ReLU 1 3 50 18x28 7.23 82.07 1.01 30.4433
CFF ReLU 1 5 50 18x28 7.73 82.64 0.87 30.4333
CAMF ReLU 10 5 0 18x28 7.98 83.98 0.95 27.78
CAF ReLU 10 3 0 18x28 8.6 81.95 0.78 26.7833
CMFF ReLU 1 5 50 18x28 8.06 82.8 1 25.9067
CAFF ReLU 1 7 50 18x28 7.81 82.48 1.1 25.3
CAMFF ReLU 1 3 50 18x28 8.06 87.2 1.22 22.9733
CAMFF ReLU 1 5 50 18x28 8.22 84.76 1.23 21
CFF ReLU 1 7 50 18x28 9.67 84.63 0.88 19.2567
CAMFF ReLU 20 3 50 18x28 4.42 88.54 1.55 0
CAF ReLU 10 7 0 18x28 11.2 82.4 0.76 0
CAMF ReLU 1 3 0 18x28 3.68 14.11 0.82 0
CF ReLU 1 3 0 18x28 21.2 63.09 0.45 0
CF ReLU 10 3 0 18x28 19.59 65.53 0.51 0
CF ReLU 20 3 0 18x28 20.17 67.28 0.57 0
CF ReLU 1 5 0 18x28 19.67 61.1 0.44 0
CF ReLU 10 5 0 18x28 18.6 63.82 0.51 0
CF ReLU 20 5 0 18x28 20.25 66.46 0.56 0
CF ReLU 1 7 0 18x28 20.37 62.03 0.45 0
CF ReLU 10 7 0 18x28 19.83 65.73 0.5 0
CF ReLU 20 7 0 18x28 17.77 62.97 0.54 0
CMFF ReLU 1 7 50 18x28 10.17 84.96 1.01 0
CMF ReLU 1 3 0 18x28 19.5 69.55 0.62 0
CMF ReLU 20 3 0 18x28 13.1 83.78 0.78 0
CMF ReLU 1 5 0 18x28 16.65 69.15 0.6 0
CMF ReLU 10 5 0 18x28 13.06 82.15 0.7 0
CMF ReLU 20 5 0 18x28 13.55 84.96 0.77 0
CMF ReLU 1 7 0 18x28 20.79 72.8 0.61 0
CMF ReLU 10 7 0 18x28 12.15 80.33 0.68 0
CMF ReLU 20 7 0 18x28 12.07 83.54 0.72 0
CAFF ReLU 1 5 50 18x28 5.25 68.13 1.1 0
CAF ReLU 1 3 0 18x28 14.71 54.31 0.68 0
CAF ReLU 1 5 0 18x28 17.98 50.57 0.65 0
CAF ReLU 1 7 0 18x28 21.57 65.85 0.68 0
CAMFF ReLU 1 7 50 18x28 6.36 68.54 1.23 0
CAMF ReLU 1 5 0 18x28 13.35 40.41 0.84 0
CAMF ReLU 1 7 0 18x28 12.36 39.23 0.82 0
CMF ReLU 10 3 0 18x28 13.47 81.3 0.7 0
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A.16 Cross-validation results of CNN Stride Analysis
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A.17 List of all Networks for CNN Stride Analysis

Stride Kernels Size Neurons Input FPR[%] Recall[%] Avg. time[ms] Score
1 2 3 50 18x28 4.38 82.36 0.88 50.24
1 5 3 50 18x28 4.01 80.16 0.96 50.1267
1 2 5 50 18x28 4.83 82.44 0.88 47.5667
2 5 3 50 18x28 4.88 81.75 0.87 47.2367
2 5 5 50 18x28 5.41 82.56 0.87 44.3267
1 1 5 50 18x28 5.37 80.81 0.86 44.1833
3 5 7 50 18x28 5.7 83.37 0.86 43.0567
2 5 7 50 18x28 5.62 82.52 0.87 43.0533
2 2 3 50 18x28 5.58 83.13 0.92 42.4967
1 5 5 50 18x28 5.5 82.85 0.94 42.4833
3 5 5 50 18x28 5.99 81.18 0.83 41.1867
1 5 7 50 18x28 5.79 82.24 0.92 40.94
3 2 3 50 18x28 6.28 83.62 0.82 40.46
1 2 7 50 18x28 6.16 83.13 0.89 39.6167
3 5 3 50 18x28 6.24 83.05 0.88 39.31
1 1 3 50 18x28 6.86 83.94 0.89 35.6867
2 2 5 50 18x28 7.15 80.77 0.83 34.09
3 2 7 50 18x28 7.11 83.01 0.88 34.0767
2 2 7 50 18x28 7.52 83.41 0.85 32.35
2 1 3 50 18x28 7.85 84.8 0.81 31.6333
3 2 5 50 18x28 7.44 79.59 0.85 31.5567
1 1 7 50 18x28 7.85 83.9 0.85 30.5333
3 1 3 50 18x28 8.06 84.11 0.81 30.1433
2 1 5 50 18x28 8.02 81.38 0.84 28.8733
3 1 5 50 18x28 8.39 81.79 0.82 27.19
3 1 7 50 18x28 9.42 80.65 0.81 20.83
2 1 7 50 18x28 9.3 83.74 0.9 20.78
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A.18 Cross-validation results of CNN Activation Function Anal-
ysis

Forward time [ms]
0.6

0.7 0.8 0.9 1.0False Positive Rate [%]
48121620

Recall [%
]

56

64

72

80

relu
tanh
leaky relu
sigmoid
identity

0.60.70.80.91.0
Forward time [ms]

55

60

65

70

75

80

85

Re
ca

ll 
[%

]

5101520
False Positive Rate [%]

55

60

65

70

75

80

85

Re
ca

ll 
[%

]

0.60.70.80.91.0
Forward time [ms]

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Fa
lse

 P
os

iti
ve

 R
at

e 
[%

]



APPENDIX 86

A.19 List of the 40 highest scoring Networks for CNN Activa-
tion Function Analysis

Activation Kernels Size Neurons Input FPR[%] Recall[%] Avg. time[ms] Score
ReLU 10 3 50 17x27 4.88 80.57 0.98 44.64
Sigmoid 2 5 50 17x27 5.29 81.67 0.88 44.55
Sigmoid 10 3 50 17x27 4.88 78.86 0.96 44.47
Leaky ReLU 2 5 50 17x27 5.29 81.3 0.9 44.02
Sigmoid 5 7 50 17x27 5.25 80.37 0.92 43.55
ReLU 1 3 50 17x27 5.62 83.05 0.86 43.43
Leaky ReLU 5 3 20 17x27 5.45 82.03 0.9 43.31
TanH 10 3 20 17x27 5.29 80.49 0.93 43.15
Sigmoid 5 5 50 17x27 5.25 80.69 0.95 43.06
ReLU 2 3 50 17x27 5.62 82.68 0.88 42.90
Leaky ReLU 2 3 20 17x27 5.66 80.28 0.85 42.46
Sigmoid 10 7 50 17x27 5.37 81.54 0.96 42.42
Sigmoid 10 5 50 17x27 5.29 81.22 0.98 42.4
Sigmoid 2 7 50 17x27 5.66 82.07 0.89 42.26
TanH 10 3 50 17x27 5.5 82.52 0.95 42.17
Leaky ReLU 10 7 50 17x27 5.5 83.13 0.97 41.97
Leaky ReLU 5 7 50 17x27 5.66 83.01 0.93 41.77
ReLU 10 5 50 17x27 5.7 83.5 0.96 41.1
TanH 2 5 20 17x27 6.16 83.46 0.86 40.32
Leaky ReLU 5 5 50 17x27 5.95 83.62 0.93 40.24
ReLU 2 5 20 17x27 6.16 82.48 0.86 40
Leaky ReLU 5 7 20 17x27 6.07 83.33 0.91 39.82
ReLU 10 3 20 17x27 5.79 81.14 0.96 39.77
TanH 1 3 50 17x27 6.2 83.09 0.87 39.76
ReLU 10 7 50 17x27 5.99 83.66 0.96 39.41
ReLU 5 5 20 17x27 6.28 83.21 0.9 38.72
TanH 10 7 50 17x27 6.12 83.17 0.96 38.47
Leaky ReLU 10 5 20 17x27 6.12 81.71 0.95 38.18
Sigmoid 5 3 50 17x27 6.16 80.2 0.93 37.84
ReLU 10 3 10 17x27 6.24 81.38 0.93 37.75
TanH 2 3 20 17x27 6.53 82.89 0.87 37.71
TanH 10 3 10 17x27 6.16 79.92 0.94 37.54
Leaky ReLU 1 3 50 17x27 6.69 83.5 0.85 37.36
Leaky ReLU 5 5 20 17x27 6.53 83.58 0.9 37.34
Leaky ReLU 2 7 50 17x27 6.53 82.76 0.89 37.27
Leaky ReLU 10 3 10 17x27 6.12 78.78 0.95 37.20
Sigmoid 10 5 20 17x27 6.24 78.9 0.95 36.52
TanH 5 3 20 17x27 6.49 81.67 0.93 36.35
ReLU 2 7 50 17x27 6.82 83.98 0.87 36.34
ReLU 5 3 10 17x27 6.49 78.37 0.88 36.25
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A.20 Faulty cross-validation results of all CNNs for analyzing
Kernel Count, Kernel Size, Neuron Count and Input Di-
mensions
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A.21 Cross-validation results of all CNNs for analyzing Kernel
Count, Kernel Size, Neuron Count and Input Dimensions
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A.22 Cross-validation results of pareto-optimal CNNs for ana-
lyzing Kernel Count, Kernel Size, Neuron Count and In-
put Dimensions
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A.23 List of CNNs cut due to faulty training

Structure Activation Kernels Size Neurons Input

CFF ReLU 50 5 20 15x24
CFF ReLU 50 3 50 18x28
CFF ReLU 50 5 50 18x28
CFF ReLU 50 7 50 20x31
CFF ReLU 50 3 50 21x33
CFF ReLU 50 5 20 21x33
CFF ReLU 50 5 50 22x35
CFF ReLU 50 5 50 23x36
CFF ReLU 50 5 50 24x38
CFF ReLU 50 3 10 14x22
CFF ReLU 50 3 20 14x22
CFF ReLU 50 5 10 14x22
CFF ReLU 50 3 10 15x24
CFF ReLU 50 3 20 15x24
CFF ReLU 50 5 10 15x24
CFF ReLU 50 7 10 15x24
CFF ReLU 50 3 10 16x25
CFF ReLU 50 3 20 16x25
CFF ReLU 50 5 10 16x25
CFF ReLU 50 5 20 16x25
CFF ReLU 50 7 10 16x25
CFF ReLU 50 3 10 17x27
CFF ReLU 50 3 20 17x27
CFF ReLU 50 3 50 17x27
CFF ReLU 50 5 10 17x27
CFF ReLU 50 7 10 17x27
CFF ReLU 50 5 20 17x27
CFF ReLU 50 3 10 18x28
CFF ReLU 50 3 20 18x28
CFF ReLU 50 5 10 18x28
CFF ReLU 50 5 20 18x28
CFF ReLU 50 7 10 18x28
CFF ReLU 50 3 10 19x30
CFF ReLU 50 3 20 19x30
CFF ReLU 50 5 10 19x30
CFF ReLU 50 5 20 19x30
CFF ReLU 50 5 50 19x30
CFF ReLU 50 7 10 19x30
CFF ReLU 50 7 20 19x30
CFF ReLU 50 3 10 20x31
CFF ReLU 50 3 20 20x31
CFF ReLU 50 3 50 20x31
CFF ReLU 50 5 10 20x31
CFF ReLU 50 5 20 20x31
CFF ReLU 50 7 10 20x31
CFF ReLU 50 7 20 20x31
CFF ReLU 50 3 10 21x33
CFF ReLU 50 3 20 21x33
CFF ReLU 50 5 10 21x33
CFF ReLU 50 7 10 21x33
CFF ReLU 50 7 20 21x33
CFF ReLU 50 3 10 22x35
CFF ReLU 50 3 20 22x35
CFF ReLU 50 5 10 22x35
CFF ReLU 50 5 20 22x35
CFF ReLU 50 7 10 22x35
CFF ReLU 50 7 20 22x35
CFF ReLU 50 7 50 22x35
CFF ReLU 50 3 10 23x36
CFF ReLU 50 3 20 23x36
CFF ReLU 50 5 10 23x36
CFF ReLU 50 5 20 23x36
CFF ReLU 50 7 10 23x36
CFF ReLU 50 7 20 23x36
CFF ReLU 50 5 10 24x38
CFF ReLU 50 5 20 24x38
CFF ReLU 50 7 10 24x38
CFF ReLU 50 7 20 24x38
CFF ReLU 50 7 50 24x38
CFF ReLU 50 3 10 24x38
CFF ReLU 50 3 20 24x38
CFF ReLU 50 3 50 24x38
CFF ReLU 50 5 10 25x39
CFF ReLU 50 5 20 25x39

Structure Activation Kernels Size Neurons Input

CFF ReLU 50 5 50 25x39
CFF ReLU 50 7 10 25x39
CFF ReLU 50 7 20 25x39
CFF ReLU 50 7 50 25x39
CFF ReLU 50 3 10 25x39
CFF ReLU 50 3 20 25x39
CFF ReLU 50 3 50 25x39
CFF ReLU 20 5 20 14x22
CFF ReLU 20 3 10 16x25
CFF ReLU 20 7 50 17x27
CFF ReLU 20 5 20 20x31
CFF ReLU 20 3 10 15x24
CFF ReLU 20 5 10 17x27
CFF ReLU 20 3 10 17x27
CFF ReLU 20 3 10 18x28
CFF ReLU 20 7 10 18x28
CFF ReLU 20 7 20 18x28
CFF ReLU 20 3 10 19x30
CFF ReLU 20 3 20 19x30
CFF ReLU 20 3 10 20x31
CFF ReLU 20 3 20 20x31
CFF ReLU 20 7 10 20x31
CFF ReLU 20 3 10 21x33
CFF ReLU 20 3 10 22x35
CFF ReLU 20 5 10 22x35
CFF ReLU 20 7 10 22x35
CFF ReLU 20 7 20 22x35
CFF ReLU 20 3 10 23x36
CFF ReLU 20 3 20 23x36
CFF ReLU 20 5 10 23x36
CFF ReLU 20 7 10 23x36
CFF ReLU 20 7 20 23x36
CFF ReLU 20 7 50 23x36
CFF ReLU 20 5 10 24x38
CFF ReLU 20 5 20 24x38
CFF ReLU 20 7 10 24x38
CFF ReLU 20 7 20 24x38
CFF ReLU 20 3 10 24x38
CFF ReLU 20 5 10 25x39
CFF ReLU 20 7 10 25x39
CFF ReLU 20 7 20 25x39
CFF ReLU 20 3 10 25x39
CFF ReLU 10 5 10 14x22
CFF ReLU 10 5 10 19x30
CFF ReLU 10 7 10 22x35
CFF ReLU 10 3 20 23x36
CFF ReLU 10 7 10 24x38
CFF ReLU 10 5 10 25x39
CFF ReLU 10 3 10 18x28
CFF ReLU 10 7 20 19x30
CFF ReLU 10 7 10 20x31
CFF ReLU 10 3 10 21x33
CFF ReLU 10 5 10 21x33
CFF ReLU 10 7 10 21x33
CFF ReLU 10 5 10 23x36
CFF ReLU 10 5 10 24x38
CFF ReLU 10 3 10 24x38
CFF ReLU 10 3 20 24x38
CFF ReLU 10 7 10 25x39
CFF ReLU 10 3 20 25x39
CFF ReLU 5 5 10 20x31
CFF ReLU 5 5 10 22x35
CFF ReLU 5 7 10 23x36
CFF ReLU 5 5 10 24x38
CFF ReLU 5 5 10 25x39
CFF ReLU 2 5 10 22x35
CFF ReLU 2 5 10 16x25
CFF ReLU 2 5 10 18x28
CFF ReLU 2 5 10 21x33
CFF ReLU 2 7 10 21x33
CFF ReLU 1 7 50 23x36
CFF ReLU 1 7 10 17x27
CFF ReLU 1 3 10 20x31
CFF ReLU 1 5 10 21x33



APPENDIX 91

A.24 List of pareto-optimal CNNs for analyzing Kernel Count,
Kernel Size, Neuron Count and Input Dimensions

Kernels Size Neurons Input FPR Recall Avg. time Max. Time Score

5 3 50 23x36 3.55 80.37 0.99 1.66 52.35
10 5 50 16x25 3.8 82.97 0.98 1.63 51.92
2 3 50 24x38 3.84 81.14 0.95 1.6 51.67
5 3 50 16x25 4.05 82.48 0.92 1.57 51.46
2 3 50 18x28 4.17 82.36 0.89 1.29 51.3
10 3 50 18x28 3.88 81.87 0.97 1.33 51.27
5 3 50 18x28 4.05 81.75 0.93 1.62 51.01
2 3 50 19x30 4.59 83.21 0.88 1.34 49.26
10 3 50 25x39 3.6 80.41 1.14 1.74 49.07
5 5 50 19x30 4.5 83.7 0.93 1.61 48.96
5 3 20 18x28 4.42 82.6 0.94 1.53 48.88
5 5 50 24x38 4.17 83.17 1.03 1.33 48.77
5 5 50 22x35 4.3 83.66 1 1.48 48.75
1 3 20 20x31 4.83 81.99 0.84 1.36 48.21
5 5 50 14x22 4.92 83.94 0.9 1.29 47.12
2 3 20 17x27 5.37 83.54 0.87 1.28 44.89
20 5 50 18x28 5 84.07 0.99 1.63 44.89
10 5 50 22x35 4.88 84.63 1.04 1.53 44.79
10 7 50 16x25 5.08 84.27 0.99 1.66 44.47
2 5 20 19x30 5.45 82.4 0.86 1.27 44.23
2 7 50 18x28 5.58 84.15 0.88 1.37 43.63
1 3 50 14x22 5.7 83.09 0.85 1.47 43.16
1 5 50 16x25 5.87 83.37 0.84 1.24 42.43
2 7 50 20x31 5.91 84.63 0.9 1.52 41.41
10 7 50 18x28 5.79 84.47 0.99 1.63 40.28
2 5 50 17x27 6.24 84.27 0.89 1.46 39.51
10 7 50 15x24 6.16 84.76 0.95 1.58 38.96
1 5 50 19x30 6.4 83.78 0.87 1.4 38.79
1 3 10 19x30 6.53 80.93 0.82 1.31 38.06
2 7 50 16x25 6.57 83.78 0.87 1.18 37.77
2 7 50 22x35 6.4 84.96 0.96 1.44 37.38
1 3 50 15x24 6.98 83.7 0.86 1.26 35.48
1 5 50 14x22 7.36 83.94 0.84 1.3 33.68
1 5 50 15x24 7.31 82.24 0.83 1.53 33.62
1 7 50 19x30 7.98 84.35 0.87 1.61 29.50
1 5 20 14x22 8.39 83.78 0.83 1.32 27.65
1 7 50 15x24 8.68 84.51 0.84 1.37 25.95
1 7 20 19x30 8.88 83.98 0.82 1.32 24.98
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