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Abstract

This work compares the performance of two machine learning methods for object locali-
zation on images. For this purpose a support vector machine and a convolutional neural
network are applied to the problem of localizing Nao robots on a robot soccer field. To
gain more insight into the learning behavior of the neural network not only the final per-
formance but also the internal processing is explored. Furthermore data augmentation
techniques are used and evaluated in their effect.
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Introduction

Machine learning gains more and more importance in current digital data processing. This
can be traced back to the increase of accessible computational power and data storage
of modern computer systems. The Internet is a further reason for the success of such
methods. It gives a wide range of people and facilities access to large sets of data, which
in turn can be processed by powerful computers and cloud computing. It also enables
institutions to collect data, which need human input or expertise e.g. Amazon Mechanical
Turk or CAPTCHA-Codes.

The distinctive feature of machine learning is the ability of such methods to learn re-
levant patterns of data sets instead of filtering through humanly designed rules. This
makes machine learning on the one hand a very powerful tool but on the other hand
less predictable and thereby less reliable in safety critical environments. To utilize the
full potential of these methods it is important to gain insight into the learning process
so that the reason for unexpected outputs can be amended before they arise. A large
field of machine learning research is related to image processing. There are also research
competitions for image classification and object detection as well as segmentation [1], [2].
A recently very well performing but less intensively researched and understood method in
those competitions is the deep convolutional neural network (DCNN) [3], [4]. It is based
on the biologically inspired idea of an artificial neural network (ANN). ANNs consist of
simplified mathematical models of biological neurons, which mimic the behavior of their
biological counterparts. Then a network is created by cross-linking multiple instances re-
sulting in a system, which is able to be trained to perform complex decision. DCNNs have
the same basic behavior but are closer to the visual cortex of animals because they look
for small certain features on images in overlapping regions [5].

The aim of this work is to utilize machine learning to extract potentially interesting re-
gions of images, so that these small image parts can be processed and evaluated with
more specific and powerful methods. The scenario for this research is robot soccer of the
RoboCup Standard Platform League (SPL) [6]. Because this is a real time application
with limited computational power, it is necessary to utilize fast and small dimensioned
approaches. This offers in turn more insight into the performance and potential of machi-
ne learning methods and especially DCNNs, when only small networks can be applied to
a problem. Therefore two different machine learning methods are tested and eventually
compared in their performance - a DCNN and an approach using support vector machines
(SVM) on contrast images. Although the applied approaches are intended to find gene-
ralized objects, the focus lies on localizing robots, so that a more detailed perspective of
the learning process can be given.

The following chapter 1 explains the fundamental principles behind both methods and in-
troduces measures to evaluate the performance. Chapter 2 presents the general constraints
for both approaches and describes the reasoning behind their selection as well as their
implementation. Chapter 3 gives and overview over typical issues of training in machine
learning and discusses solutions. Furthermore, the image data base and training metho-
dology of both approaches is presented. Both approaches are then evaluated with respect
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to the posed problem and the learning characteristics in chapter 4. Lastly, a concluding
summary of this work and an outlook for further research is given in chapter 5.
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1 Fundamentals

This chapter explains the fundamental principles of this work. This includes the target
hardware, methods and evaluation units.

1.1 Nao Robotic System

The Nao is a programmable humanoid robot produced and sold by Softbank Robotics. It
is 0.57 m tall and weighs 5.2 kg [7]. It is composed of many various sensors including
two cameras, speakers, microphones, haptic sensors, a gyroscope, infra red and sonar.
Since this work is only focused on image processing, only camera relevant topics will be
discussed.

Fig. 1.1: Nao head with dimensions and properties of its two cameras [7].

Similar to humans the head contains the vision system and the information processing
unit. The vision system is composed of two cameras - one in the forehead and one at the
position of the mouth (s. Figure 1.1). The field of vision of both cameras only overlaps
partially, thus they do not produce a full stereo vision image. The information processing
unit is an Intel ATOM Z530 1.6 GHz CPU with 1 GB RAM.

1.2 Machine Learning

Machine learning describes the process of knowledge generation from experience. I.e. that
a system learns generalized patterns and rules from examples, which can then be applied to
unknown data. This has the benefit of learning dependencies between input signals, which
might not be obvious to a human. Therefore it can be useful to apply machine learning
techniques to problems with very little or no prior knowledge of input signal dependencies.
Additionally machine learning and especially supervised learning with available ground
truth data for each training example requires minimal human interaction and can be
performed on a large scale using modern computers.

3



In this work, two machine learning approaches are applied to the problem of object loca-
lization, whose fundamental principles are explained in the following sections.

1.2.1 Support Vector Machine

The following and the subsequent sections about SVMs are based on [8], if not otherwise
mentioned. SVMs are basically a method to classify linearly. They separate two classes in
a d-dimensional space through a separating hyperplane, e.g. a line in the two-dimensional
case (s. Figure 1.2 below).

origin

w

margin 2
‖w‖

|w0|
‖w‖

Fig. 1.2: Optimal separating hyperplane in a two-dimensional case. The encircled instances
are the defining support vectors.

Hyperplanes cannot be warped which is why the classes have to be linearly separable.
The hyperplane is only defined by the vectors of those class instances, which lie closest to
the hyperplane. These vectors are called support vectors and justify the name of this me-
thod. The distance between hyperplane and support vectors is maximized by optimization
methods for optimal separation.

Assuming two separate classes C1 and C2 with corresponding labels +1 and −1, an in-
stance can be described by X = {xt, rt}. rt = +1, if xt belongs to C1 (xt ∈ C1) and
rt = −1, if xt belongs to C2 (xt ∈ C2) [8]. Thus a w and w0 of a hyperplane are sought,
subject to the following constraints.

wTxt + w0 ≥ +1 für rt = +1 (1.1)

wTxt + w0 ≥ −1 für rt = −1 (1.2)

Both constraints can be combined:

rt(wTxt + w0) ≥ +1 für rt = +1 (1.3)
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The value +1 on the right side of the inequality describes the minimum distance between
hyperplane and the nearest class instance. This increases the generalization ability of
the SVM. The distance between hyperplane and an arbitrary class instance xt can be
calculated by the following expression.

|wTxt + w0|
‖w‖ (1.4)

1.4 is maximized, when ‖w‖ is minimized. An SVM can be computed by the following
optimization rule.

min
1

2
‖w‖2 subject to rt(wTxt + w0) ≥ +1,∀t (1.5)

The closest class instances have distance 1
‖w‖ to the hyperplane. 1.5 is a quadratic opti-

mization problem, whose complexity depends on the input dimension d and not on the
number of training examples N . This results from the fact that the separating hyperpla-
ne w has the dimension of the input space d and is the subject to be optimized with
the above formulation. However, the higher dimension causes a more complex optimiza-
tion problem. To remedy this, 1.5 can be rewritten to an unconstrained problem using
Lagrange multipliers αt.

Lp =
1

2
‖w‖2 −

N∑
t=1

αt[rt(wTxt + w0)− 1] (1.6)

=
1

2
‖w‖2 −

N∑
t=1

αtrt(wTxt + w0) +
N∑
t=1

αt

Lp must be maximized with respect to αt, subject to the constraints that the gradient of
Lp with respect to w and w0 are zero and that αt ≥ 0. Because this is a convex quadratic
optimization problem, the Karush-Kuhn-Tucker constraints of the following two equations
can be applied to solve the dual problem.

∂Lp
∂w

= 0⇒ w =
N∑
t=1

αtrtxt (1.7)

∂Lp
∂w0

= 0⇒
N∑
t=1

αtrt = 0 (1.8)

Plugging 1.7 and 1.8 into equation 1.6 yields a dual problem Ld with different constraints:

Ld =
1

2

(
wTw

)
−wT

N∑
t=1

αtrtxt − w0

N∑
t=1

αtrt +
∑
t=1

αt

= −1

2

(
wTw

)
+

N∑
t=1

αt

= −1

2

N∑
t=1

αtrt
(
xt
)T N∑

t=1

αtrtxt +
N∑
t=1

αt (1.9)
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1.9 must be maximized with respect to αt and subject to
∑

t α
trt = 0 und αt ≥ 0,∀t. The

problem can then be solved with quadratic optimization methods.

If αt is calculated for all N , the major part vanishes with αt = 0. Only a small part of xt

with αt > 0 remains and defines the set of xt, which are stored as support vectors of the
SVM. The support vectors fulfill the constraint rt(wTxt+w0) = 1 and have the minimum
distance to to the separating hyperplane. From this constraint w0 can be computed using
any support vector.

w0 = rt −wTxt (1.10)

When performing classification, the minimum distance is not enforced anymore, so that
the classification rule becomes:

g(x) = wTx + w0 (1.11)

x ∈ C1 if g(x) > 0

x ∈ C2 if g(x) ≤ 0

Soft Margin Hyperplane

Two datasets are often not linearly separable in real applications. The previously descri-
bed algorithm will not work in this case because the minimum distance to the separating
hyperplane cannot be established. Therefore ξt ≥ 0 is introduced. ξt describes the devia-
tion to the minimum required distance. If 0 < ξt < 1, ξt is correctly classified but does
not have the required minimum distance. If ξt ≥ 1, ξt lies on the wrong side of the hyper-
plane, which results in a wrong classification. If ξt = 0, ξt is correctly classified and has
the required minimum distance. The soft margin hyperplane has to fulfill the following
requirement:

rt(wTxt + w0) ≥ 1− ξt (1.12)

With C as adjustable parameter to weight the influence of
∑

t ξ
t, 1.6 can be reformulated.

Lp =
1

2
‖w‖2 + C

N∑
t=1

ξt −
N∑
t=1

αt[rt(wTxt + w0)− 1 + ξt]−
N∑
t=1

µtξt (1.13)

µt is introduced as new Lagrange parameter to ensure a positive ξt. Setting ∂Lp

∂w
, ∂Lp

∂w0
and

∂Lp

∂ξt
to zero and plugging the results into 1.13, yields again the dual problem Ld.

∂Lp
∂w

= w −
N∑
t=1

αtrtxt = 0⇒ w =
N∑
t=1

αtrtxt (1.14)

∂Lp
∂w0

=
N∑
t=1

αtrt = 0 (1.15)
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∂Lp
∂ξt

= C − αt − µt = 0 (1.16)

Ld = −1

2

N∑
t=1

αtrt
(
xt
)T N∑

t=1

αtrtxt +
N∑
t=1

αt (1.17)

Ld is maximized with respect to αt, subject to
∑

t α
trt = 0 and 0 ≤ αt ≤ C, ∀t.

origin

w

margin 2
‖w‖

|w0|
‖w‖

Fig. 1.3: SVM soft margin in a non-linearly separable case. One red instance is on the
wrong side of the hyperplane and is misclassified ξ > 1. One blue instance lies on the
correct side but within the margin 0 < ξ < 1. The encircled instances are again the
support vectors.

Instances with αt = 0 vanish because the distance to the separating hyperplane is suf-
ficient. Instances with 0 < αt < C define w because they lie exactly on the required
margin and are thus the support vectors. Furthermore w0 can be calculated from ξt = 0
and rt(wTxt + w0) = 1. Instances with αt = C lie within the margin or are misclassified
but also stored as support vectors. Thus the number of support vectors can be interpreted
as an upper-bound estimate for the number of errors. 1.11 can again be used to classify
instances. Values close to zero would be instances with αt = C during training and can
therefore only be treated with low confidence.

1.2.2 Artificial Neural Networks

The content of this section is based on [8] and [9]. ANNs are networks of highly sim-
plified, artificial neuron models. An artificial neuron is supposed to imitate the behavior
of a biological neuron regarding the information processing. Hence the idea is to build a
network of artificial neurons to make complex decisions similar to biological life-forms.
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For this purpose the model of an artificial neuron is developed from a biological neuron
model followed by the description of an ANN.

Fig. 1.4: Model sketch of a biological neuron [10].

Figure 1.4 depicts a biological neuron model. Important for the development of an artifical
neuron are the dendrites, the nucleus, the axon and the synapses. Dendrites carry electrical
signals to the cell body and possess many branches. They can be interpreted as input
channels to the neuron. The nucleus processes all input signals and reacts according to its
function. If the inputs activate the nucleus, it sends an output signal, which is a sequence
of pulses, through its axon. The axon is a single long nerve fiber which is connected to
target cells. In the case of an ANN these target cells can be other neurons, which have
their dendrites connected to the firing neuron. The connection point between axon and
dendrite is called synapse. The connection strength of a synaptic connection may vary
depending on the stimulation frequency [11]. A basic model of an artificial neuron can be
derived from this description.

Artificial Neuron

synapse

dendrite cell body

activation function

output axon

x1 w1

w1x1

w2x2

b

f
∑

j wjxj + b

f
(∑

j wjxj + b
)

axon from
connected neuron

Fig. 1.5: Mathematical model of an artificial neuron based on [10].
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Figure 1.5 shows the model of an artificial neuron. wj is the strength of each synaptic
connection, which damps or amplifies the incoming signal xj of the connected axon. The
nucleus processes each weighted signal by building the sum

∑
j wjxj + b. b is a bias term,

which introduces an offset and can shift the threshold for triggering the neuron activation
which leads to the next general assumption of this model. The exact timing of each pulse
does not have any influence on the activation. Thus the frequency of the output signal
is described by an activation function f . Accordingly the axon carries the output signal

f
(∑

j wjxj + b
)

. The weights wj and the bias b are of major importance because they

are adjustable parameters and can be trained.

As already mentioned, the bias b can introduce a threshold shift in combination with the
activation function f . A typical choice of f is the sigmoid function. An advantage of this
function is, that it imitates the behavior of a neuron in the sense that it has an output
saturating close to zero, if the input is highly negative, and saturating close to one, if the
input has large positive values (s. Figure 1.6).

sig(x) =
ex

1 + ex
(1.18)

-10 -5 0 5 10

x

0

0.5

1

y

Fig. 1.6: Sigmoid function.

The value of the bias b can shift the activation threshold to the left or right. It also has the
mathematically desirable property of differentiability, which is important during training
and is discussed later.

d sig(x)

dx
= sig(x) (1− sig(x)) (1.19)
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input

x2

x3

1

w1

w2

w3

b

hw,b(x)

artificial neuron

neuron output

x1

Fig. 1.7: Single artificial neuron with three inputs, a bias term and output hw,b(x). Based
on [9].

Figure 1.7 shows a less detailed model of a neuron. This work assumes a real input and
parameter space x,w, b ∈ R and activation functions f with f : R 7−→ R. Given an input
the neuron forms a hypothesis hw,b(x) using the weights and bias term:

hw,b(x) = f

(
3∑
j=1

wjxj + b

)
(1.20)

If bias b is assumed to be a weight vector entry w0 and the constant input 1 an input
vector entry x0 = 1, 1.20 can also be written as a more compact vector product with
w = [b, w1, ..., w3]T and x = [1, x1, ..., x3]T .

hw,b(x) = f
(
wTx

)
(1.21)

If there are more than one neurons processing the same inputs, they are called parallel.
The single inputs and neurons of a layer are also called units. E.g. Figure 1.8 has three
input units, three hidden units and one output unit. The units are enumerated from top
to bottom starting at one.
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hw,b(x)

output layer

input

W(1)

w
(1)
23

x2

x3

1

x1

L1

1

hidden layer
L2

a
(2)
2

a
(2)
3

a
(2)
1

L3

w
(1)
1

Fig. 1.8: Three layer structure with an input (L1), hidden (L2) and output layer (L3). The
input layer as well as the hidden layer have three units (plus one bias term). The blue
W s show how the indices can denote single values, vectors or a matrix of weights. E.g.
the index tuple of w

(1)
23 defines the weighted connection between input x3 and unit 2 of

the subsequent layer. a
(2)
1 , a

(2)
2 and a

(2)
3 denote the corresponding activations, i.e. neuron

outputs. Based on [9].

Let nl denote the number of network layers and a specific layer l be described by Ll. This
makes L1 the input and Lnl

the output layer. As illustrated in Figure 1.8 the weights of a
layer can be summarized to weight matrix W(l). A single weight of a connection between
two units can be described by w

(l)
ij , where j denotes the unit of layer l and i the unit of

layer l+1. If only one lower index is given w
(1)
l denotes the weight vector of the connection

between all units of layer l and unit 1 of layer l + 1. The same notation goes for the bias
b

(l)
i without index j because it is mentioned separately and always connected to a unit

outputting 1. The network described above has nl = 3 layers and its parameters can be
summarized to (W, b) = (W(1),b(1),W(2),b(2)). Following this notation a

(l)
i denotes the

activation of unit i in layer l.

The network out of 1.8 can be calculated by the following formulas:

a
(2)
1 = f

(
w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1

)
a

(2)
2 = f

(
w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3 + b

(1)
2

)
a

(2)
3 = f

(
w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3 + b

(1)
3

)
hW,b = a

(3)
1 = f

(
w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1

)
(1.22)

The weighted sum of inputs to unit i in layer l, including the bias, can be summarized to
z

(l)
i . Additionally the simplification a

(1)
i = xi can be made to achieve a more generic way

of writing down unit activations.
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a
(l)
i = f(z

(l)
i ) (1.23)

Organizing the parameters and inputs in matrices and vectors leads to a very compact
and generic formulation for the forward pass of a feedforward ANN of fully connected
layers.

z(l+1) = W(l)a(l) + b(l) (1.24)

a(l+1) = f(z(l+1)) (1.25)

The same principles apply for a network with more hidden layers and multiple outputs,
making hW,b(x) a hypothesis vector.

Training

Independent of the size or number of layers of a feedforward ANN it can be trained using
backpropagation, which is discussed in the further development of this section. The basic
idea is to adjust the weights of the network to minimize a measurable or computable
error in the training data. A typical measure is the sum of squared errors. The error for a
single example with input x and ground truth output y can be calculated by the following
equation.

J(W, b;x, y) =
1

2
‖y − hW,b(x)‖2 (1.26)

Applying gradient descent to update each network parameter w
(l)
ij and b

(l)
i yields:

w
(l)
ij = w

(l)
ij − α

∂J(W, b; x,y)

∂w
(l)
ij

b
(l)
i = b

(l)
i − α

∂J(W, b; x,y)

∂b
(l)
i

(1.27)

α is an adjustable parameter also known as learning rate, which scales the weight update
and will be discussed later. To perform gradient descent the partial derivatives of 1.27 have
to be computed. This can be achieved with the backpropagation algorithm. Let therefore
δ

(l)
i denote an error term that measures how much error was introduced by node i in layer
l into the layer output. At first a forward pass is performed using input x to compute the
network hypothesis hW,b(x). Since ground truth network output y is known for a training

example δ
(nl)
i can be computed.

δ
(nl)
i =

∂J(W, b; x,y)

∂z
(nl)
i

= −(yi − a(nl)
i )f ′(z(nl)

i ) (1.28)
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Once δ
(nl)
i for the final layer is known, δi of the preceding layers can then be computed in

backwards propagating fashion, where sl denotes the number of units in layer l.

δ
(l)
i =

(
sl+1∑
j=1

w
(l)
ij δ

(l+1)
j

)
f ′(z(l)

i ) (1.29)

The necessary partial derivatives for gradient descent weight update of 1.27 are:

∂J(W, b; x,y)

∂w
(l)
ij

= a
(l)
j δ

(l+1)
i

∂J(W, b; x,y)

∂b
(l)
i

= δ
(l+1)
i

(1.30)

Vectorization leads again to a more compact notation for the partial derivatives 1.30.

∇W(l)J(W, b; x,y) = δ(l+1)(a(l))T

∇b(l)J(W, b; x,y) = δ(l+1)
(1.31)

Backpropagation and weight updates can be applied in repeated fashion until the error
converges to a minimum. It is important to note that the minimum is not necessarily a
global minimum. Thus the choice of the learning parameter α is crucial. If α is very small,
the weight updates are proportionally small and lead to a slow convergence. A huge
α leads to strong weight updates and might never find a minimum because it ”leaps”
over any local minimum. Additionally the results depend on initialization. A constant
initialization might always lead to the same local minimum and similar weight updates.
It is recommendable to initialize with small random weights for symmetry breaking and
compare the performance of several solutions.

1.3 Artificial Neural Networks in Image Processing

This section describes basic layer types and activation functions commonly used in image
processing and are parts of ANNs, which achieved state-of-the-art results [4].

1.3.1 Fully Connected Layer

The details of a fully connected layer were already discussed in section 1.2.2. In DCNNs
for image processing they are often used as final or series of final layers processing all
extracted features and forming a final decision in a classification or regression problem.
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32

32

3
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32

32

3

1

1
1

output

32× 32× 3 32× 32× 3

1× 1× 1

Fig. 1.9: Schematic drawing of a fully connected layer with one neuron (blue) processing
an equally sized input (red) and forming a single layer output. The exemplary input
dimension of 32×32×3 could be e.g. an input image with a width and height of 32 pixels
and three color channels.

A fully connected layer has as many parameters as its input since it is, as the name states,
fully connected to its input plus an additional bias term resulting in 32 · 32 · 3 + 1 = 3073
parameters (s. Figure 1.9). Thus it introduces a high amount of parameters, if multiple
outputs are required or the input dimension is big (s. Figure 1.10 below).

32

32

3
input neurons

32

32

3

3

1
1

output

32× 32× 3 32× 32× 3

1× 1× 3

33

Fig. 1.10: Schematic drawing of a fully connected layer with three neurons (blue, green
and yellow) processing the same equally sized input (red) and forming three output values.

Figure 1.10 shows a fully connected layer with three neurons processing the same input.
Each neuron (blue, green and yellow) is fully connected to the input (red) and produces
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one respective output value independently of the other neurons. The number of trainable
parameters rises therefore by a factor of 3.

1.3.2 Convolutional Layer

The convolutional layers are inspired by the organization of the animal visual cortex.
Specific cells within the cortex react to edge-like features and are locally invariant to
the exact position of patterns [5]. This property is adapted by convolutional neurons
in a way that weight parameters are shared making features on images locally invariant
which makes these type of layers very feasible. Convolutional neurons ”look” for previously
learned features e.g. edges or color patches on images and produce a feature map depicting
the presence or vacancy of these features. Neurons of convolutional layers have much fewer
parameters and can therefore be trained more efficiently. Compared to neurons of fully
connected layers, the number of parameters does not depend on the input size but the
filter size. As shown below, a neuron of a convolutional layer acts as small filter moving
over the input, which results in a feature map instead of a single output. An exemplary
filter can have the size of 5× 5× 3 and therefore only have 5 · 5 cot 3 + 1 = 76 parameters
independent of the input width and height, whereas the neuron of a fully connected layer
would have 32 · 32 · 3 + 1 = 3073 parameters in the case of the example input.

32

32

3

3
5

input

filter

28

28

1

output
32× 32× 3 28× 28× 1

5× 5× 3

5

Fig. 1.11: Convolutional Layer performing feature extraction on a 32× 32× 3 input.

Figure 1.11 illustrates how the convolution works. On the left side is an input, which
could be an image of dimension 32 × 32 × 3. In the middle is a filter also called kernel,
which corresponds to the receptive field of a cell. This filter computes the dot product
between the small part it is ”looking” at and its weight values. Likewise to convolution
it goes over the entire input, computing a feature map, which is on the right side in
blue. The filter dimensions can be arbitrarily chosen as long as one dimension is not
larger than the respective image dimension. The stride with which the filter moves can
also be freely chosen but should be smaller than the filter size because otherwise the
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desired property of overlapping receptive fields vanishes. Depending on the filter size and
stride the convolution not only reduces the depth but also width and height dimension
(e.g. from 32 × 32 × 3 to 28 × 28 × 1 in example figure above). Large network design is
often easier, if the output width and height is equal or an integer fraction of the input.
To deal with this problem modern libraries apply Zero Padding. Zero Padding frames
the input with zeros, such that the output has the desired size after convolution. Since
a dot product is computed the zeros do not influence the resulting feature map but
introduce additional mathematical operations, which are not feasible on systems with
tough hardware constraints. Thus Zero Padding is not used or further discussed in this
work. Likewise to fully connected layer, convolutional layers can also have multiple neurons
in form of filters processing the same input. This is also very common because one filter
learns to extract the presence of one feature e.g. a vertical edge on an input image. Another
filter would then be necessary to detect e.g. horizontal edges or a certain color. Each filter
produces its own feature map depicting the presence of the respective feature it is trained
to detect. A subsequent convolutional layer can process these feature maps and detect
deeper features, which are combinations of the previously detected feature e.g. a vertical
edge with a specific color. These deep features are responsible for the name of DCNNs.

The forward pass of a convolutional layer can be described with the convolution operator
∗ analogous to 1.25 and 1.24. k denotes the k-th filter in layer l.

z
(l+1)
k = (W

(l)
k ) ∗ a(l) + b

(l)
k (1.32)

a
(l+1)
k = f(z

(l+1)
k ) (1.33)

The vectorized partial derivatives for gradient descent can then be computed like the
following.

∇
W

(l)
k
J(W, b; x,y) =

∑
i

(a
(l)
i ) ∗ δk(l+1)

∇
b
(l)
k
J(W, b; x,y) =

∑
(δ(l+1))

(1.34)

The sum of the second equation adds the entries of the error matrix δ(l+1) [9].

1.3.3 Max-Pooling Layer

The max-pooling layer performs downsampling of a given input. It preserves the largest
input and discards the rest. In image processing DCNNs it is usually placed after each
convolutional layer reducing the width and height of the layer output [12], [13].
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Fig. 1.12: Schematic drawing of a 2 × 2 sized max-pooling layer downsampling an 8 × 8
input to 4× 4 with a stride of 2 so that no overlapping occurs.

During training the preserved outputs have to be stored, so that during backpropagation
only the weights, which contributed to this output, are upgraded. The gradient through
the discarded outputs is set to zero then.

1.3.4 Rectified Linear Unit (ReLU)

Although the Sigmoid function (s. Figure 1.6) has the advantage of better approximating
the real behavior of neurons regarding a maximal limit of stimulation frequency, it can
lead to disadvantages in ANNs. The saturating behavior can result in dying gradients
during backpropagation. All output values are close to 0 or 1, if the neuron output is
smaller than −4 or larger than 4. If e.g. the initialization pushes a neuron output to large
values, any small weight update changes have a gradient close to zero, so that eventually
no effective update is performed anymore and the learning process of this neuron is stuck.
Less important but still worth mentioning is the computation time. 1.35 and its derivative
are very efficient to compute. The sigmoind function 1.18 and its derivative 1.19 are more
expensive to evaluate than the simple linear parts of a ReLU.

f(x) =

{
x, if x > 0

0, otherwise
(1.35)

f ′(x) =

{
1, if x > 0

0, otherwise
(1.36)
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Fig. 1.13: ReLU function.

It also does not saturate for any positive neuron output and leads to faster convergence of
DCNNs [12]. A modification of the standard ReLU is the leaky ReLU, which has a small
slope a < 1 in negative regions to remedy the problem of saturation.

f(x) =

{
x, if x > 0

ax, otherwise
(1.37)

f ′(x) =

{
1, if x > 0

a, otherwise
(1.38)
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Fig. 1.14: Leaky ReLU function with parameter a = 0.1.

There exist several more modifications and activation functions [14] but ReLUs are a com-
mon choice in image processing because of the faster convergence and simple computation
[12], [3], [4].
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1.4 Evaluation Metrics

This section gives a short introduction of the evaluation units to measure the performance
of the chosen approaches in this work. The general aim is to predict regions of interest
(RoI). When extracting regions of interest for localization, a positive or negative result
cannot be directly measured. To have a comparable measure of a successful or false pre-
dictions the intersection over union (IoU) of a predicted and the ground truth bounding
box can be computed.

1.4.1 Intersection over Union

IoU is a way of measuring how similar the predicted and the ground truth bounding box
are. Like the name suggests, it divides the intersection area by the union area. If Ap and
At are the areas of the predicted and ground truth region of interest, the IoU can be
calculated as follow.

IoU =
Ap ∩ At
Ap ∪ At

(1.39)

[15] proposes an IoU value of 0.5 for a positive detection. The same criterion was adopted
by the sources [16] and [3], whose proposed object localization methods are used in this
work.

1.4.2 Precision and Recall

Now that a measure for positive and negative predictions exist it is possible to determine
how well a localization system detects positive instances and how precise these predictions
are. Namely, these values are recall and precision.

Considering a simple document search system with only two types (relevant and irrele-
vant), each document of a set is either relevant (positive) or irrelevant (negative). After
a search is performed, every document in the set belongs to one of the following four
different cases, when compared to the underlying ground truth.

• True Positive (TP): A relevant document is retrieved.

• True Negative (TN): An irrelevant document is rejected.

• False Positive (FP): An irrelevant document is retrieved.

• False Negative (FN): A relevant document is rejected.

This can be illustrated like in the following figure based on [17].
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Fig. 1.15: The red line separates relevant items from irrelevant items. The blue line sepa-
rates retrieved items from not retrieved ones. The abbreviations denote the four different
cases of the list above.

More generalized, recall and precision can be defined like the following:

Recall measures the ability of retrieving items, that are relevant [17].

recall =
No. retrieved relevant items

Total No. relevant items in data base
=

|TP|
|TP ∪ FN| (1.40)

Precision measures the ability of rejecting items, that are irrelevant [17].

precision =
No. retrieved relevant items

Total No. retrieved items
=

|TP|
|TP ∪ FP| (1.41)

Examining both formulas leads to two observations:

1. If the number of false negatives is low and the number of true positives is not zero,
the recall is high. → The system has a high recall, if it classifies every item as
relevant.

2. If the number of false positives is low and the number of true positives is not zero,
the precision is high. → The system has a high precision, if it classifies one relevant
item as relevant and rejects the rest of the data set as irrelevant.

Thus only precision and recall together can be used to measure the performance of a
system. A good system should have high precision and high recall [17].

One additional important note has to be made for the further evaluation. Since it is
natural, that there are situations without any visible relevant object the image sets contain
such scenarios. Recall and precision are computed for each image and then averaged over
the respective set. To reward the system for rejection of false positives the precision is
100 %, if there is no object instance and no prediction. Otherwise it is 0 %. An empty
image in the sense of no present object instance does not yield any information about the
system’s recall ability. Therefore, these instances are excluded for recall calculation.
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2 Applied Methods for Object Localization

This chapter introduces two different approaches for object localization on images, which
are later on compared in their performance. The first section points out constraints, which
lead to the selection of both methods. Afterwards, both methods are explained in terms of
their basic principles and implementation. Since the selected DCNN approach is oversized
for the posed problem of this work, the proposed network structure is scaled down. This
results in four problem adjusted network structures, which will also be evaluated among
each other in chapter 4.

2.1 Constraints

Since the Nao is supposed to perform autonomous actions and decisions it is limited to
the built-in hardware. Additionally as stated in the previous chapter, the performance of
any machine learning technique relies on the provided training data. Both constraints will
be explored in the subsequent sections.

2.1.1 Hardware

Images are usually stored in an array or a more sophisticated type of data structure, which
can store the color model information and position of each pixel. When processing images
for object localization, typically patches of images are processed instead of single pixel
values. This results in multiple vector product computations and leads to the hardware
related limitation of floating point operations per second (FLOPS). The Intel Atom Z530
can perform approximately 1 GFLOPS using vector products on a Linux based operating
system [18]. The Nao’s frame rate is set to 30 frames per second (FPS). Thus every
computation should be completed in a time frame of approximately 1

30
seconds. This

leaves 1
30
·1 GFLOPS ≈ 33.3 MFLOPS for one cycle, which is shared by all other modules

running simultaneously. The number of floating point operations of the implemented
approaches should therefore be kept as low as possible and never exceed 33.3 MFLOPS.
If the number of available floating point operations per cycle is exceeded, it cannot be
guaranteed anymore that all modules running can finish their respective calculations in
time. This in turn can lead to a complete failure of the system, if e.g. the necessary
computations for stable walking cannot be performed in time.

2.1.2 Training Data

The diversity and amount of training data is crucial for the performance of machine
learning methods but also depends on the machine learning system itself. If it has many
free adjustable parameters, it can reflect complex relationships and decisions. However,
numerous free parameters require huge amounts of training examples, to avoid overfitting
which will be elaborated in more detail in the following chapter. Consequently the time
required for one epoch (i.e. the system has trained with each example once) of training
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rises with the number of training examples. This again makes it more time consuming
to perform system validation to tune manually adjustable parameters. Especially neural
networks require multiple validations because they can settle in a local minimum. Thus
training time must also be taken into consideration because it can be a limiting factor.

To guarantee a diverse set of training data, the data base for training, validation and
testing contains images taken by the Nao during robot soccer events in Brazil, China and
Hamburg. It consists to one part of images taken in-game, which can include instances of
robots, balls and goals but also none (i.e. background). The other part consists of staged
situations with different lighting conditions.

So far there is no application for automated generation of images with tagged regions
of interest for SPL robot soccer, making huge amounts of labeled training data hardly
accessible. The labeling had to be performed manually and resulted in a base set of
approximately 1700 images.Furthermore, data augmentation techniques were applied to
extend the data base by introducing more variation in terms of position and scale. These
methods are explained and evaluated in chapter 3 and 4.

2.2 Contrast Based Object Localization

This approach focuses on a human selected image feature. Selecting image features in
machine learning offers the benefit of more insight and control over the learning and
is therefore less prone to overfitting. Depending on the application there can be useful
features, which are robust against variation of certain environmental conditions, which
may require a lot of training examples to learn. In the case of object detection, objects can
be seen as stand-alone things with closed boundaries and centers [16]. A gradient image
depicts the change of intensity or color in an image. Combining these properties leads to
the conclusion, that normed gradient (NG) features of an image are a good discriminant
for object detection because little variations of closed boundaries do not have a huge
impact on their representation.
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a) Example image. b) NG map of example image.

Fig. 2.1: Original image taken in-game by a Nao robot (left) and the corresponding NG
map.

Figure 2.1 shows a natural image and the corresponding image of NG features. NG features
only represent intensity change without information about its direction, which results in
a more compact representation to make calculations more efficient. NG features are also
insensitive to changes of translation, scale and aspect ratios, making them a robust feature.

[16] proposes an approach using binarized normed gradients (BING) for object detection.
The abbreviation BING will be used to denote this approach from this point on. BING uses
two cascaded SVMs and binary model approximation to speed up feature extraction and
testing. [16] claims to generate object proposals at 300 FPS and being approximately 1,000
times faster than comparable methods in their test set up (CPU: Intel i7-3940XM) making
this fast approach a suitable candidate for object localization on the Nao robotic system.
The cascaded SVMs have to learn 136 free parameters in the proposed configuration
and were trained with the PASCAL VOC 2007 image set, which contains roughly 5,000
training images and 20 different object classes. In this work the SVMs are trained with
nearly 30,000 images, which should be enough to avoid overfitting, although they are
mainly augmented and not original.

2.2.1 Implementation and Methodology

The complete implementation is available online as C++ code and was performed by the
authors of [16]. Consequently the following implementation details are based on [16].

The core idea of BING is to use a sliding window approach and two cascaded SVMs to
localize objects on an image. Before any localization is performed, the image is transformed
into a map of NGs. This is done by applying a one dimensional mask [−1, 0, 1] to compute
the horizontal and vertical image gradients gx and gy. The NG map is then calculated
with min (|gx|+ |gy|, 255) and saved in byte values. The sliding window has a fixed size
of 8 × 8 and is fed to the first SVM making the window a 64 dimensional NG feature.
To capture objects of different sizes and shapes the 8 × 8 window scans over predefined
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quantized window sizes. I.e. the NG map is reshaped to 36 different scales and aspect
ratios as depicted in the following figure.

Fig. 2.2: Exemplary quantized windows of a NG map with a quantization base of q = 2.
It halves width and height in each step.

Each window gl is scored with the learned linear model w ∈ R64.

sl = 〈w,gl〉 (2.1)

l = (i, x, y) (2.2)

sl is the filter score of an NG feature window gl at a certain location l. A location l is
defined by the quantized windows size i and the corresponding position of the sliding
window on the NG map specified by x and y. After applying non-maximum suppression
(NMS) to each quantized window size i a small set of proposals is left for each i. NMS is
a method to remove redundant bounding box proposals. Redundant bounding boxes are
basically multiple proposals for the same region and only differ slightly by their position
and size. To measure the ”redundancy” the IoU value between boxes can be calculated.
A basic approach, which is also used in BING, sorts all boxes by its score in descending
order and compares the highest scoring proposed bounding box to the rest. All proposals,
which have too much overlap in terms of e.g. IoU, are discarded. In the next step the
iteration starts from the following highest scoring box, which has not been discarded by
the previous steps [19]. Since NMS is applied for each quantized window separately, the
IoU value does not have to be computed. Each prediction results from the sliding 8 × 8
window and thus position and size are known within one quantized window. After sorting
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the proposals by their score, the nearest neighboring windows of the highest scoring one
are discarded. The distance, which defines neighbors is a hyperparameter and set to 2 as
default. Typically very narrow windows (e.g. 10× 500) are less likely to contain an object
instance compared to a quadratic window (e.g. 100 × 100). Thus a second filter score is
defined, which is computed by the second SVM.

ol = vi · sl + ti (2.3)

vi and ti are coefficient and bias terms evaluating the filter score sl based on the quantized
window size i to obtain an objectness score ol. Both SVMs are optimized with respect to
the following problem [16] [20]:

min
w
‖w‖1 + C

∑
t

(max(0, 1− rtwTxt))2 (2.4)

2.4 is slightly modified to match the notation of chapter 1, with rt and xt as ground truth
and training instance pairs of sample t and w as general hyperplane to be optimized.
Additionally to the standard formulation the error is squared to penalize larger deviations
more than smaller ones and a penalty term ‖w‖1 is added. ‖ ‖1 is the 1-norm and penalizes
the sum of weights, which yields a sparse solution w [20]. The learned linear model w can
look like the following.

Fig. 2.3: Learned model w of [16].

Figure 2.3 shows large weights along the borders of w. The large weights seem to separate
an object in the center from its background. Because w is learned from real example
instances, it is more sophisticated and realistic compared to manually designed weights.
w puts for example more emphasis on upper body object boundaries. This makes sense
because the upper body usually covers more enclosed area than legs and therefore contains
more information about object presence.

To speed up the NG feature extraction and testing process a binarized approximation
method is used, which is explained in more detail in [16]. It basically approximates the
learned model w and the extracted feature window with binary values. These can ideally
be stored by an int64 variable which in turn explains the choice of an 8 × 8 window.
bitwise operations like or, add or shift can then be used to test BING features.
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2.3 Deep Convolutional Neural Network Object Localization

DCNNs typically have a less controlled approach. They are often used in an end-to-
end learning scheme, in which a training example is presented and the desired output is
compared to the real output for error backpropagation and weight updates. The filters for
feature extraction are learned during training and not predefined. This offers the benefit of
little human interaction and might lead to extraction of features, which are not plausible
for humans but effective. However, the lack of control also poses disadvantages. Since the
feature extraction filters are learned from training data, their robustness to change in
environmental conditions is highly reliant on the training data set. A diverse and large
set of training images is therefore necessary to avoid overfitting.

Many DCNN approaches for object localization involve a preceding region of interest
proposal generator (e.g. R-CNN [21]) or consist of extremely large network structures
(e.g. DeepMultiBox [22]). The chosen method for this work is based on [3]. The DCNN of
[3] is claimed to be among the fastest performing real-time object detectors and operates
at 155 FPS in the fastest configuration. It is a simple feedforward network consisting only
of convolutional, downsampling and fully connected layers. The system models object
detection as a regression problem to localize and classify 20 different object classes. It
divides the input image into an even grid through convolution and downsampling and
predicts bounding boxes and confidence scores for each box.

Fig. 2.4: Illustration of how spatial information is preserved through the computed image
grid. Two bounding boxes are predicted for each grid cell. The highest scoring bounding
boxes are shown on the right side [3].

The training set consists of approximately 1,210,000 images taken from the ImageNet
1000-class and PASCAL VOC 2007 and 2012 competition data sets [2], [23], [1]. Since it
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contains 32,650,000 free parameters with only 1,210,000 training images, extensive data
augmentation is applied during training. However, the used hardware (NVIDIA GeForce
Titan X), GPU computation and network depth (appr. 32,650,000 free parameters) exceed
the previously mentioned constraints by far.
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Fig. 2.5: Network structure of [3] in its fast configuration.

Figure 2.5 shows the described network. The large number of free parameters also indicate
a large number of necessary floating point operations which have to be reduced heavily
to run on a real time system like the Nao robot. In addition the roughly 800 available
original training images are not suitable for 32,650,000 free parameters even if extensive
data augmentation is applied. Hence free parameters and thus the number of layers should
be minimized to avoid overfitting and fulfill the hardware constraints. A more detailed
view and explanation of the implemented minimized network structure is provided in the
next section.

2.3.1 Implementation and Methodology

This section describes the problem adjusted and downsized network implementation. Ho-
wever, for a better understanding, the original network in its fast configuration is described
first. The description in this section is based on [3].

The general structure is given in Figure 2.5. It consists of a repeated convolution and max
pooling scheme to extract features and create a 7× 7 map of deep features. Each hidden
layer has a leaky ReLU as non-linear activation function. Only the output layer uses a
simple linear activation because real values should be predicted and thus negative or too
large ones should lead to a higher error value. The network predicts 1470 output values.
They consist of 20 class specific scores, 2 bounding box locations (x, y,

√
w,
√
h) and

2 corresponding objectness scores for each grid cell. The square root of w and h should
reflect that small errors in small bounding boxes matter more than small errors in large
bounding boxes. The true bounding box width w and height h are normalized by the
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image width and height, so that they fall between 0 and 1. The bounding box location
defined by x and y is parametrized to be an offset of a particular grid cell and is also
bound between 0 and 1. If x = 0 and y = 0, the bounding box center of a grid cell would
lie in the upper left corner of that particular grid cell. If x = 1 and y = 1, the bounding
box center would lie in the lower right corner of that grid cell. A grid size of 7× 7 yields:

class scores outputs

(7× 7︸ ︷︷ ︸)× (
︷︸︸︷
20 +2× (1 + 4︸ ︷︷ ︸)) =

︷︸︸︷
1470

grid size objectness score + location

The loss function looks like the following.

Err = λcoord

S2∑
i=0

B∑
j=0

1
obj
i,j (xi − x̂i)2 + (yi − ŷi)2
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+
S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2

(2.5)

S denotes the grid size and B the number of bounding box predictors per grid cell.
Thus index i defines one specific grid cell and j a particular predictor. xi, yi, wi and
hi are the predicted bounding box locations and sizes. To reflect that small deviations
in small bounding boxes matter more than small deviations in large bounding boxes the
predicted square roots of ŵi and ĥi are incorporated in the loss function. Ci is the network
confidence of object presence and pi(c) the class specific probability score for one of the
classes c ∈ classes. The respective hatted values x̂i, ŷi, ŵi, ĥi, Ĉi and p̂i(c) are ground truth
values to compute the sum squared error. 1obj

i is either 0 or 1 and denotes if an object is
present in grid cell i. 1obj

i,j is 0 or 1 and denotes the ”responsible”predictor of an object.
Only the predictor, which predicts the bounding box with the highest IoU value for an
object, is marked as ”responsible”. This leads to specialization among all predictors. Each
predictor improves at predicting certain sizes, aspect ratios or classes of objects. 1noobj

i,j is
1, if no object is present in grid cell i and 0 otherwise. Thus only the confidence for an
object in grid cell i is penalized, if no object is contained in it. Lastly there are λcoord and
λnoobj, which are adjustable parameters. λcoord weights the localization error and λnoobj

the confidence error, when no object is present. Often the major number of grid cells
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do not contain an object, which pushes the confidence scores of these cells towards zero.
This again can overpower the gradients of cells containing an object leading to model
instability. Therefore the localization error is weighted higher than the confidence error
(λcoord = 5, λnoobj = 0.5).

During real application, NMS is applied to remove redundant bounding boxes, which
depict the same object. After sorting all predicted boxes by their respective confidence
score, the IoU value between the highest scoring box and each subsequent box is computed.
If the IoU value exceeds 0.55 the lower scoring box is removed. This process iterates
through all non-discarded boxes.

The basic idea of the described approach is kept when downsizing the DCNN. I.e. the
network stays a feedforward network, which needs one evaluation to produce localization
proposals and confidence scores and it divides the image into an even grid through convo-
lution and downsampling (s. Figure 2.4 and 2.5 for illustration of downsampling and grid).
To accomplish this goal, the network is downsized evenly in a sense that the input and
output sizes as well as the layer numbers and layer depth are reduced. The loss function
is also scaled with regard to the simpler problem and limited computational power.

To predict scores and locations, whilst taking the spatial information of the grid into
consideration, at least one fully connected layer is necessary as final layer. Subsequently
every output value results from a dot product of a weight vector and the complete previous
grid layer. This again shows that the number of outputs and its preceding layer have a
large impact on the number of free parameters. It is therefore especially important to
scale the fully connected layer and the preceding one down. Since this work only deals
with Nao robots the 20 class specific scores fall off. The grid size is reduced to 3 × 3.
Lastly each grid cell only predicts one bounding box because each additional predictor
would introduce five more output values for each cell.

grid size outputs

(
︷ ︸︸ ︷
3× 3)× (1 + 4︸ ︷︷ ︸) =

︷︸︸︷
45

robot score + location

Compared to the original network output illustration (s. Figure 2.4) the downsized version
looks like the following.
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Fig. 2.6: Illustration of downsized image grid comparable to Figure 2.4. Only one bounding
box is predicted for each grid cell. Larger grid cells can lead to less precise localization
and small objects might be undetected.

The figure above illustrates the 3 × 3 prediction grid projected onto the original input
image. It is clearly visible that a coarser grid will have more difficulties to localize small
objects, looking at the upper right grid cell of Figure 2.6. Only a small fraction of this cell
is covered by the robot, which could likely yield a false localization or even no detection of
the robot presence at all. However, increasing the grid size from 3×3 to 4×4 would already
yield 80 outputs and thereby almost double the number. This would highly increase
the number of free parameters. The influence of the final fully connected layer on the
parameter number can be seen later in this section in Table 1. The error function can be
rewritten as follows.

Err = λcoord

S2∑
i=0

1
obj
i (xi − x̂i)2 + (yi − ŷi)2
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)2

(2.6)

To utilize the benefits of a DCNN at least two convolutional layers are necessary, such that
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features of a combination of features are extracted. Based on the fact that every additional
layer introduces more floating point operations and parameters, the hidden layer number
is set to two. This allows more different testable setups since one full training needs less
time and thus gives a better basic insight. The downsampling process from input layer
to a 3 × 3 grid should be as even and smooth as possible, i.e. the input of each hidden
layer is downsampled by the same constant factor and should not be too drastic (e.g.
from a 400 × 400 layer input to a 10 × 10 layer output). Furthermore there is a trade-
off between input size and necessary floating point operations. However, the input size
must not be too small, otherwise important information cannot be detected anymore. If,
for example, an image is downsampled from 400 × 400 to 10 × 10 in the input space,
the chance of detecting and localizing an object are extremely low because too much
fine grained information was lost. Since there is the chance of multiple robots, which
do not necessarily cover the whole image the input resolution of the image should not
be below 100 × 100 pixels. A squared image dimension is chosen for simplicity of the
implementation. Otherwise the layer outputs would also differ in their aspect ratio and
introduce more complications when further downsampling by the network is performed.
Because the input image is scaled down before being fed to the network, fine grained
information is lost in any case. Thus resizing from a ratio of 4 : 3 to 1 : 1 only introduces
a relatively small distortion and is generally performed on all input images. To realize a
reasonable input resolution and a quick downsampling to a 3 × 3 grid after two hidden
layers the downsampling is performed by both convolutional layers and max-pooling layers.
The stride of the convolutional filter is therefore set to three pixels instead of the common
choice of one. If a stride of one is chosen, parts of image patches are evaluated several
times, which leads to high computational effort. The max-pooling layers have a stride of
two pixels and a size of 2× 2 pixels. Lastly the size of the convolutional filters should be
discussed. To keep the number of filters small it is recommendable to choose filters with
a height and width larger than three pixels. Thus, the filters can learn few coarse features
instead of a combination of many small filters, which need more training data to prevent
co-adaption symmetric learning. Since a final 3× 3 grid is required, the input width and
height may vary depending on the filter sizes.

The general structure of the designed network is depicted in Figure 2.7 below.
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Fig. 2.7: General network design. An appropriate filter size and number will be determined
below.

The filter sizes wfilt, hfilt, dfilt and layer depths dlayer are not specified because in this setup
the depth of a filter always equals the depth of its input. Which leads to the fact that the
number of filters in each convolutional layer also influence the number of free parameters
in the subsequent network layers. The following formulas can be used to calculate the
number of free parameters and necessary floating point operations for one feedforward
evaluation.

Let NoPfilt be the number of parameters of a convolutional filter, wfilt and hfilt be the
width and height of a convolutional filter (e.g. 3 × 3) and dinp be the depth of the input
to a convolutional filter, then the number of free parameters of a filter NoPfilt can be
calculated like the following.

NoPfilt = wfilt · hfilt · dinp + 1(bias) (2.7)

If several identically dimensioned filters in a layer process the same inputs, the number
of free parameters per filter NoPfilt is multiplied by the number of filters NoFlayer in that
layer because each filter possesses its own trainable set of parameters.
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NoPconv−layer =
(
wfilt · hfilt · dinp + 1(bias)

)
·NoFlayer (2.8)

The number of free parameters of a fully connected layer can be calculated using the
number of outputs NoOfc−layer and the dimension of the input.

NoPfc−layer =
(
winp · hinp · dinp + 1(bias)

)
·NoOfc−layer (2.9)

Let NoOconv−layer be the number of outputs of a convolutional layer, then the number
of floating point operations for one evaluation for that layer NoFLOPconv−layer can be
calculated as follows.

NoFLOPconv−layer = wfilt · hfilt · dinp ·NoOconv−layer · 2 (2.10)

Every output value is computed by a dot product of the filter with an input patch. Thus
wfilt ·hfilt ·dinp multiplications and wfilt ·hfilt ·dinp−1 summations are necessary. Eventually
the bias term of that filter is added resulting in wfilt ·hfilt · dinp · 2 floating point operations
for each output value.

The number of necessary floating point operations for a fully connected layerNoFLOPfc−layer

with a given output number NoOfc−layer can be calculated in similar fashion. A fully
connected layer is then basically a filter with an equal shape of its input.

NoFLOPfc−layer = winp · hinp · dinp ·NoOfc−layer · 2 (2.11)

The following table presents different network layouts regarding filter number and size,
the corresponding number of free parameters and the necessary floating point operations
for one feedforward evaluation.

Filter Size and
Number, Hidden

Layer 1

Filter Size and
Number, Hidden

Layer 2

Free
Network

Parameters

FLOP per
Evaluation

Filt. size: 5× 5
Filt. number: 2

Filt. size: 5× 5
Filt. number: 4

356conv +
1665fc

123600conv +
3240fc

Filt. size: 5× 5
Filt. number: 4

Filt. size: 5× 5
Filt. number: 8

1112conv +
3285fc

254400conv +
6480fc

Filt. size: 7× 7
Filt. number: 2

Filt. size: 7× 7
Filt. number: 4

692conv +
1665fc

291648conv +
3240fc

Filt. size: 7× 7
Filt. number: 4

Filt. size: 7× 7
Filt. number: 8

2168conv +
3285fc

597408conv +
6480fc

Tbl. 1: Overview of different network layout configurations and respective parameter and
floating point operations count (FLOP denotes in this table the number of floating point
operations).
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Table 1 shows, that the dimensions of the fully connected layer in combination with
the last convolutional layer have a high impact on the parameter number, whereas the
dimensions of the convolutional layers mainly increase the floating point operations. The
different setups will be evaluated in chapter 4.

2.4 Summary

Based on the defined general hardware constraints for methods, which are supposed to
run on the Nao robot, two object localization methods were selected and evaluated with
regard to these. Furthermore the principles and implementation details of the selected
approaches were explained. The original proposed DCNN structure of [3] had to be ad-
justed to the mentioned constraints and resulted due to a variety of options in four final
network structure proposals, which will be further evaluated in chapter 4.
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3 Training

Training is the essential part of any machine learning method because in this stage the
actual learning takes place. This chapter discusses problems arising during training and
options to resolve these.

3.1 Difficulties

Two major problems in machine learning are overfitting and necessary training time.
Overfitting occurs when insufficient amounts of training data is available for the number
of trainable parameters. Training time rises, when there are a lot of trainable parameters
and respectively lots of training data to be processed. Both problems will be explored in
the next sections.

3.1.1 Overfitting

Finding the appropriate machine learning method and complexity of a system to ap-
proximate the desired function can be problematic. Especially for ANNs there exists no
theoretical model to determine the appropriate number of neurons for a given data set and
the desired performance. Generally, an increase of model complexity leads a to an increase
of accuracy during training because the model is very ”flexible” and fits the training data
very accurately. If it is applied to unknown data, it fails because it also ”remembers”
unimportant features like noise as important to perform better on the training data. This
process is known as overfitting.

a) Two class classification problem
with an overfitting (dashed) and
the true (bold) underlying decisi-
on boundary.

b) Two class classification problem
with an underfitting (dashed) and
the true (bold) underlying decision
boundary.

Fig. 3.1: Both figures illustrate a two class (blue and red) classification problem. The
underlying true decision boundary is depicted by the bold line. Blue and red instances,
which lie on the wrong side are outliers, which result from random noise.
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If the system is less complex it has a better generalization ability because it cannot fit the
noise. But a too simple system will underfit and will not be able to represent the desired
but unknown function.

The dilemma between complex systems, which could possibly overfit and simple systems,
which could in turn underfit, is known as the bias-variance dilemma [24].

3.1.2 Necessary Training Time

In the case of SVMs a complex system would consist of a large input or feature space if
the Kernel-Trick is applied. If the input is e.g. 1000-dimensional, the optimal separating
hyperplane in the 1000-dimensional input space has to be found by optimization methods
subject to the constraints in section 1.2.1. In case of an ANN the complexity can be
determined by the number of neurons and overall trainable parameters in the network.
The training of a feedforward network is performed through error backpropagation and
iterative weight updates. The more parameters there are, the more computational effort
goes into error backpropagation. Independent of the selected machine learning method a
complex system needs a large and diverse set of training examples to negate overfitting.
Thus the training needs more time until it has seen every training example at least once
and the training process takes longer because the optimization has to be performed on a
larger set of parameters.

Most machine learning methods also include tunable parameters to adjust the influence
of certain error values and constraints. Finding the right setting can take several training
and validation runs which is highly time consuming, if one full training takes several
days or even more. In contrast to SVMs, ANNs do not pose a problem which can be
solved by convex optimization. Gradient descent algorithms can get stuck in local minima
during optimization. To decrease the risk of this case several iterations of random weight
initialization and training can be applied, which makes training time again a crucial factor.

3.2 Solutions

To overcome overfitting the following solutions can be considered. Increased training time
due to complex models is more of an unavoidable but considerable effect, which should
be taken into account during the method complexity design stage.

3.2.1 Validation and Early Stopping

An overfitted system performs well on the training set but fails on unseen data. I.e. the
training error will converge to zero during training but will be very high, when the system
is exposed to unseen data. Thus the training process should be stopped, when overfitting
starts. To determine when a system is starting to overfit, a test on unseen data can be
performed in constant intervals during training. This constant testing is called validation.
The validation set consists of data, which has been previously taken out of the training
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set. A more detailed view of the training and validation set and their contents is provided
in 3.3.

stop training here

training time

training

validation

error

Fig. 3.2: Error curve of training and validation set with ideal stopping point for training
[17].

Figure 3.2 illustrates the error curve with respect to the training validation set. When
the validation error reaches its minimum and diverges training should be stopped. This
procedure is called early stopping.

3.2.2 Weight Decay

An overfitted system shows its adaptation to the training data in highly specialized para-
meters. This specialization and imbalance of parameter values results from an incomplete
training set, which leads the learning algorithm into these parameter updates. Taking a
classification problem as example, the outcome can look like Figure 3.1 a). The strong
influence of a few parameters leads to a very specialized and thus overfitted decision
boundary.

This characteristic of large specialized parameters can be utilized to counter overfitting
during training. An extra term is added to the cost function J [24], [9]:

J∗ = J +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
w

(l)
ji

)2

(3.1)

This extra term sums all squared weight values and is scaled by the hyperparameter
λ. This penalizes especially a sparse distribution of large weight values because of the
square term. It thereby prefers simple solutions over complex ones. The choice of λ has
to be determined heuristically because it depends on the number of parameters and the
problem itself. If λ is too small, it has almost no effect on the cost function, if it is too
big, it decreases the weight values irrespective of the actual model cost function [24]. This
form of regularization is also known as Tikhonov regularization or L2 regularization.
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3.2.3 Data Augmentation

With data augmentation techniques it is possible to artificially create or enlarge data sets.
The aim is to create data instances, which seem like unseen data to the machine learning
algorithm.

a) Relevant possible input
combinations covered by
training set.

b) Relevant possible input
combinations covered by
training set and augmented
data.

Fig. 3.3: The circles depict the relevant input combinations, which might occur during
application of machine learning algorithms. The black dots are the input instances covered
by the training set. The green dots are the additional augmented data instances.

Figure 3.3 illustrates how data augmentation can improve robustness of a system by
providing more and diverse data instances. This can be very useful for the task of object
localization, which needs a certain level of complexity but insufficient amounts of training
data are available. The following section presents the data augmentation techniques used
for this work.

Data Augmentation Methods

[12] and [3] also utilize data augmentation to artificially enlarge training data and pre-
vent overfitting. Both use image flipping, cropping and scaling as well as color channel
modification.

Horizontal flipping of a base image changes the position and orientation of an object and
is a very simple way to enlarge the set by a factor of two.

The idea of image section cropping is to vary the position of objects on images and also
introduce a different scaling. A cropping window of a reasonable size is chosen (e.g. 75 %
of the original image size), which should have the same height and width ratio as the
original image, so that the generated data is not distorted.
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a) Sliding window moving over input image in
depicted directions.

b) Resulting four image crops.

Fig. 3.4: The sliding crop area moves in steps of e.g. 80 pixels over the image and crops
out image parts. The resulting parts can be seen on the right. The robot positions and
scales differ, if the cropped parts are resized to the original image size.

Afterwards this window moves with an adjustable step size of several pixels over the image
and crops image sections. Since the original labeling data is known, the bounding boxes
for the cropped section can be computed and no manual labeling is necessary. Additionally
this method also introduces a new scaling of each object because most methods require a
fixed input size and therefore re-size an input of differing dimensions.

To further introduce robustness towards a change of lighting conditions [3] proposes ran-
dom adjustments of brightness in the hue, saturation, (brightness) value (HSV) color
model. This can be simply performed by transforming the training image into the HSV
color model representation and scaling the V channel.

a) Example image after brightness value sca-
ling with 0.5.

b) Example image after brightness value sca-
ling with 1.5.

Fig. 3.5: Both images have scaled brightness values to simulate darker and brighter lighting
conditions compared to the original 3.4.
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There are several additional and alternative methods for image data augmentation, which
could be utilized (s. [25]), but this work is limited to the applied methods of [3] because
the basic DCNN structure is based on this source and it is reasonable to also adapt the
augmentation methods.

Whereas image flipping and cropping are obviously improving the generalization ability
of a DCNN to localize objects because the position of robots changes, it is not clear that
color channel jittering significantly improves the generalization ability regarding different
lighting conditions. This is evaluated in section 4.3.3 of the following chapter.

3.3 Data Base

A well performing image processing system for object classification and detection for
autonomous robot systems should be generally noise resistant and robust against changes
of lighting conditions. Furthermore, it should output very few false positives because a
positive usually leads to an action. This could be a movement, a decision or transfer
of false information. In any case, the resulting action would lead to a worse situation
e.g. avoiding obstacles, which do not exist. The training images should therefore contain
information, which lead to robust and generalizable Nao robot model features.

The used data base of original images consists of 1748 images, which were taken by Nao
robots with different camera parameters and in different locations. Therefore noise and
different lighting conditions are introduced into the set, which makes the trained system
more noise resistant and lighting independent. The locations include:

Set Location No. Images Abbreviation

Nao Robot Laboratory at TUHH 131 TUHH Lab

Nao Robot Laboratory at HTWK 20 HTWK Lab

Building N at TUHH 601 TUHH N

Robotic Hamburg Open Workshop at TUHH 262 RoHOW

RoboCup, Brazil 590 Brazil

RoboCup, China 144 China

Tbl. 2: Introduction of data base images.

The ratio of images containing a robot and background is 1:1. Images containing robots
can have a single or multiple instances. Background images are either in-game scenes
without a visible robot or scenes containing a room ceiling, walls etc.
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a) Single robot instance. b) Multiple robot instances.

c) Background image of in-game situati-
on.

d) Background image of undefined situa-
tion.

Fig. 3.6: Exemplary image instances of different situations contained in the data base.

To further generalize the system, images of Nao robots contain Naos with blue, red or no
jerseys. Unfortunately, there is a bias towards blue and red jerseys because the in-game
footage can only be taken with Nao jerseys. Annotations, which store the information
about the position and size of each robot on the image are save in JSON format. An
exemplary annotation for image 3.6 b) would look like the following.

{′′objects′′ : [

{′′robot′′ : [

[′′0.1969′′,′′ 0.4125′′,′′ 0.0734′′,′′ 0.1917′′],

[′′0.1703′′,′′ 0.4125′′,′′ 0.0344′′,′′ 0.1104′′],

[′′0.2609′′,′′ 0.4146′′,′′ 0.0219′′,′′ 0.1042′′],

[′′0.3844′′,′′ 0.4062′′,′′ 0.1016′′,′′ 0.2000′′],

[′′0.5969′′,′′ 0.4042′′,′′ 0.0375′′,′′ 0.1208′′],

[′′0.8531′′,′′ 0.3917′′,′′ 0.1047′′,′′ 0.2354′′]

]}
]}
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The regions of interest for robots are given in normalized values with respect to the image
width and height. Each instance is defined by four values. The first two values denote the
position of the upper left corner of the region of interest. The first entry is the horizontal
and the second entry the vertical position. The last two values denote the width and
height of the region of interest. The third value defines the width and the fourth value
the height. A benefit of this nested structure is, that it can be easily extended by further
object types like balls or goal post locations.

In the further work only the abbreviations presented in Table 2 will be used to denote
the respective sets.

3.3.1 Color Model

The native color model of the Nao is YUV422 [26]. It splits colors into a luminance
component Y and two chrominance components U and V. Figure 3.7 illustrates the UV
plane with three different Y values.
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a) UV plane, Y = 0.
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b) UV plane, Y = 0.5.
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c) UV plane, Y = 1.

Fig. 3.7: UV plane of YUV color model with three different Y values.

Typically the values of U and V range from zero to one with white, grey and black at
U = V = 0.5.

However, this work uses images given in the red, green and blue (RGB) color model
because this improves the analysis of convolutional filters in the first layer. Unlike YUV,
in RGB images a pixel color is defined by the ratio of red, green and blue. Only the
brightness is defined by the absolute values (s. Figure 3.8).
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Fig. 3.8: Representation of the RGB color model as cube [27].

Typical convolutional filters of DCNNs have the same depth as their input. The filter
weights are not limited to the input space but can be normalized with respect to the
value range of the input space. Since the ratio in the three depth channels of the filter is
not effected by this operation, each filter can then be plotted as RGB image. The resulting
color shows, which color channels and configuration influences the output of these filters
the most.

3.4 Training Methodology Contrast Based Object Localization

As the structure of the implementation is not altered and has a convex and more stable
learning behavior compared to a DCNN, the description and evaluation of learning will
not be as detailed as for the DCNN in this work. To prevent overfitting the SVMs receives
the same augmented data as training and test set and will be evaluated using the eva-
luation metrics of section 1.4. However, the effective training set size differs, because the
implementation trains with randomly sampled background crops as negative examples
and discards empty background images. Furthermore, L1 regularization is applied. The
difference to weight decay or rather L2 regularization in this context is the 1-norm instead
of the 2-norm. L1 regularization does not favor small dense weights but only a small sum
of weights. This again can lead to sparse weights, which favor the distinct generalized
objectness model depicted in Figure 2.3.

3.5 Training Methodology Deep Convolutional Neural Network

The training will be performed in end-to-end fashion. Only inputs and ground truth output
are provided during training. To prevent overfitting data augmentation, weight decay and
periodical validation are performed. The standard gradient descent requires learning rate
adjustments, when it is getting close to local optima and converges slowly compared to
modern improved variations. Therefore, an enhanced gradient descent method is used. It
performs naturally performs a form of step size annealing [28] and is described below.
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3.5.1 Optimization

Optimization is performed with a more sophisticated version of gradient descent called
Adam, whose name is derived from adaptive moment estimation. The content of the
following is therefore based on [28]. Let t denote the training step and W all trainable
weights. J(W ) is the cost function to be optimized with respect to W , and gt the respective
gradient at training step t. Furthermore m and v are moment vectors, which have the same
dimension as the weights W and accumulate the weight gradients of previous training
steps. α is again the learning rate, ε an offset to prevent division by zero and β1, β2 ∈ [0, 1)
are decay factors for the accumulated weight gradientsm and v. g2

t denotes the elementwise
square gt � gt and βt1, βt2 the respective βs to the power of t. m and v are initialized with
m0 = 0 and v0 = 0. The suggested hyperparameter values are α = 0.001, β1 = 0.9,
β2 = 0.999 and ε = 10−8. The weight update rule becomes the following:

gt = ∇Jt(Wt−1) (3.2)

mt = β1mt−1 + (1− β1)gt (3.3)

vt = β2vt−1 + (1− β2)g2
t (3.4)

m̂t =
mt

1− βt1
(3.5)

v̂t =
vt

1− βt2
(3.6)

Wt = Wt−1 − α
m̂t√
v̂t + ε

(3.7)

After computing the gradient in 3.2 the moment vectors are calculated, such that the
moments consist of a ratio of the current gradient and the accumulated gradients. The
ratio is defined by the decay rates β1 and β2. This counters fluctuations close to a mini-
mum, if the learning rate and thus the weight updates are too large. The gradients are
squared in 3.4 because they are used for scaling of mt in 3.7. m̂t and v̂t are further scaled
moment vectors, such that the quotient of 3.7 damps the accumulated gradients mt in the
beginning to prevent divergence short after initialization. The damping decreases as t in-
creases until m̂t ≈ mt and v̂t ≈ vt. Finally both moment vectors are divided elementwise.
The square root has to be computed because the gradients are squared in 3.4 to ensure
positive gradients in 3.7. ε has to be added as safety measure to prevent division by zero.
Note that this holds when β1 < β2, otherwise the cost function might diverge soon after
initialization or later because mt does not decay faster than vt.

3.6 Summary

This chapter discussed typical issues, which arise during training of machine learning
methods and presented approaches to resolve these. Furthermore the data base was intro-
duced with a detailed view of the image origins and their color model. Lastly the training
methodologies for both of the tested approaches were presented. The presented techni-
ques and information are used to train and evaluated both object localization approaches,
which is discussed in the following chapter.
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4 Evaluation

This chapter evaluates the proposed methods of chapter 2 in terms of precision, recall and
computational time. Since especially DCNNs face more difficulties during training due to
large numbers of parameters and non-convexity of their solution compared to SVMs,
the evaluation emphasizes the DCNN learning behavior. Nevertheless, the contrast based
approach is evaluated with regard to the default implementation by the author of [16]
and model or rather configuration selection for the final test. In reference to chapter 3 the
augmentation techniques are explored in their effect to improve the result and prevent
overfitting in DCNNs. Based on error progression and filter analysis a suitable DCNN
structure is selected.

4.1 Evaluation Setup

The base data set of 1748 images is divided into 3
5

for training, 1
5

for validation and 1
5

for
testing. Both machine learning methods train with the training set and use the validation
set during training to avoid overfitting. To prevent the training and validation process to
overfit on the validation set, the test set is used for the final test of both object localization
approaches.

The training and evaluation will not be performed on the Nao robot due to the limited
time frame of this work. Thus, it is performed on a desktop computer with Linux Mint
17.2 Cinnamon 64-bit OS, an AMD Phenom(tm) II X4 965 processor and 8 GB RAM.
No multi-core or GPU computation is used during evaluation since the Nao does neither
have multiple cores nor a built in GPU. The contrast based object localization approach
is implemented in C++ and publicly available by the author of [16]. The implementation
of the proposed network structure is performed in Python with TensorFlow, NumPy and
PIL. Computation time is measured on the test machine using the standard time library
in Python and sys/time.h in C++. The respective measurements can only present a
relational comparison between both approaches and do not reflect the actually necessary
processing time on the Nao. However, if the duration of process exceed the predefined
limit of 30 ms, it will also be too slow on the weaker processor of the Nao.

4.2 Contrast Based Object Localization Using BING

Because the structure of this approach is not altered compared to the DCNN, the publicly
available C++ implementation of the respective author is used [16]. After applying data
augmentation in form of horizontal flipping and image section cropping, the test set
contains 61,430 images. No modification of the brightness is applied because it is also
not applied to the training images of the DCNN, which is explained more detailed in
4.3.3. BING automatically generates background crops as negative learning example and
discards empty background images. This changes the augmented training set size from
61,430 to 26,834. It offers the option to vary the quantization base q, the number of
proposed regions of interest pRoI in each quantized window and a NMS value to reduce the
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number of overlapping proposals. Increasing q decreases the number quantized windows
(s. Figure 2.2) and ultimately the absolute number of proposed regions of interest.

4.2.1 Model Selection

The default configuration of this approach resizes the original image to 36 different sizes
(including the original) and predicts 130 bounding boxes per size. The two SVMs rank
each bounding box and denote how likely it contains an object. However, 1,000 proposals
are too many for a Nao robot to process given the limited cycle time of 30 ms.

Assuming that a maximum number of 10 robots are on the field, the maximum number
of detectable robot objects by the viewing robot is 9. However, this unlikely case only
occurs, when all robots are in the visible area and have the same distance to the viewing
robot, so that all fall into the same quantized window size for detection. Thus, 9 proposals
per quantized window are sufficient and the maximum number of proposal per quantized
size is reduced to pRoI = 9. An additional reduction of proposals and computation time
can be achieved, by increasing the quantization base to q = 4. This means, that the image
width and height is divided by 4 after each quantization step.
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Fig. 4.1: Average prediction time for one image for q = 2 (blue) and q = 4 (red) as pRoI

increases from 1 to 20.

4.1 demonstrates that the quantization size has the largest impact on the computation
time. In fact, the average prediction time for one image for q = 2 is always bigger than
120 ms, which does not lie within the mentioned constraint of 30 ms. Since the original
aim is to predict only a small number of high quality proposals, a configuration of q = 4
and pRoI = 9 is chosen.

The performance on the test set will be discussed in section 4.4.
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4.2.2 Model Evaluation

One full training takes approximately 15 minutes due to the large number of training
images. The learned model of a robot object below does not look as generalized and
distinct as the learned model of a general object, which is depicted in 2.3.

a) Learned Nao robot
model w.

b) Exemplary image of
Nao.

Fig. 4.2: Learned Nao robot model w a) and an exemplary image of a Nao to demonstrate
the similarities.

This can be traced back to the fact, that the original set of training data only contains
marked robot instances. This yields a more specialized model of an object. The gradient
change in the middle results from the jersey which most Naos wear on the images. Above
and below the jersey are always white robot parts (i.e. head and legs) which explains the
high gradient right above and below the dark spot in the middle. The gradient is not as
salient on the sides because there is often a gap between the robot arms and its torso.
These gaps often display different parts of the background and can therefore lead to a
lower average gradient. Performing object localization on a validation image yields the
following result.

Fig. 4.3: Demonstration of all predicted boxes for a validation image using BING with
q = 4 and pRoI = 9.

The density of bounding boxes increases around the robots, which is a good sign of the
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system’s recall ability. However, the number of predictions is still too high, although the
number of proposals per quantized window size was already lowered from 130 to 9. The
system reaches a precision of 0.4 % and a recall of 18.5 %. Increasing the NMS value from
2 to 5 worsens the system performance to 0.4 % precision and 14.6 % recall. To simply
reduce the number of proposals only the highest scoring predictions shall be accepted.
Assuming again a maximum number of 9 robots at a time leads to the following.

Fig. 4.4: Demonstration of top nine highest ranking predictions.

The precision increased to 1.8 %, whereas the recall decreased to 11.1 %. Another in-
teresting observation can be made, looking at the predicted bounding box sizes. When
only the highest scoring predictions are accepted, the average size of the bounding boxes
is larger than before. The reason for this is based on the training set. Most images with
robot instances depict Naos from a close range since they are more common and in terms
of in-game situations also more important. To enlarge the training set, two augmentation
methods were applied. Horizontal flipping does not alter the scale, so that it does not
introduce a significant change in the window size scoring. The image section cropping
augmentation on the other hand does scale the resulting image because the cropped area
is resized to its original dimensions. Since the cropping is performed in a sliding window
fashion, the scale is constant and therefore biases the SVM towards a larger scale than re-
flected by the original images. A random section cropping, which only enforces a constant
aspect ratio, would hence be a more robust augmentation method.

The previous proposal images showed that as long as robots are present, the major part
of the predicted boxes are centered in this area. The figures below show the results for
images, which do not contain a robot.
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a) Typical scene without a robot instance. b) Prepared empty scene.

Fig. 4.5: Bounding box predictions of BING for two validation images, which do not
contain a robot instance to test for false positives. a) could occur in a normal game,
whereas b) only shows a small part of the soccer field.

The number of false positives is similar to the general number of predictions. Considering
that the predictions are centered around robots, if present, leads to the conclusion that
the rating of the generated proposals is not sufficient for the task of highly selective object
localization. Too many background patches exhibit BING features similar to the learned
model. This weak selectiveness results from the original intention of this approach to be
a general object proposal generator, which mainly focuses on high recall rates, with a
subsequent classifier.

In order to be used in SPL robot soccer, the BING approach could be modified, so that it
needs less computational time and only proposes very few qualitative regions of interest,
i.e. high precision. BING needs 20 ms for one image on the test machine but will need
more time on the weaker processor of the Nao. Figure 4.1 demonstrates that the processing
time mainly depends on the quantization size q and therefore on the number of performed
window quantizations. Thus, reducing the input dimensions of the image, has two benefits.
Firstly, in the scenario of SPL robot soccer there are no such tiny foreground objects,
which could be detected by an 8 × 8 pixel window on 640 × 480 input. These proposals
lead to many false positives and lower the precision. If the ball should be detected, the
halved input size would be sufficient. This would make a ball with a size of 16× 16 on a
640 × 480 image detectable. If only robots are considered, the original input dimensions
could be further reduced because robots are larger objects. Robot localization is mainly
used for obstacle avoidance and path planning, which only makes robots in close distance
important. Assuming that the smallest robot instance, which should still be detectable, has
a height of approximately 100 pixels on a 640×480 input, it could be detected by an 8×8
pixel window after scaling it down with a factor of roughly 1

12
. Secondly, a smaller input

size means less quantization operations and therefore less computational effort. A higher
selectiveness could also be achieved by increasing the dimension of the sliding windows to
learn a more detailed model. This however, would decrease the computational efficiency
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and require further research to determine the optimal size for capturing sufficiently enough
details, whilst being efficient.

Since the general idea and efficiency of BING features is interesting and has the potential
to be used on a real time system, further research could be conducted with mentioned
modifications.

4.3 Deep Convolutional Neural Network Based Object Locali-
zation

Training is performed with batches of training data with a size of 32. For the evaluation of
regularization and data augmentation only one proposed network structure of 1 is used.
The configuration of 4 filters in the first and 8 filters in the second layer with a filter size
of 7× 7 is chosen for the tests. The choice is reasonable because it has, compared to the
other proposed configurations, the most parameters (5,453) and is therefore a candidate
for overfitting, if trained on only the base training set.

4.3.1 Convolutional Filter Interpretation

Before evaluating the proposed methods a short introduction into the upcoming filter
plots should be given. The used DCNN always has two layers and thus two different sets
of filters.

a) Filters of first
layer.

b) Filters of second layer.

Fig. 4.6: Plot of first and second layer filters. Each row represents one filter with pairwise
positive and negative parts. The first layer filters can be interpreted as RGB image.

Figure 4.6 a) depicts a set of first layer filters sorted from top to bottom (i.e. first row
=̂ first filter, second row =̂ second filter etc.). The first layer filters will directly operate

50



on the input RGB image and therefore have a depth of three each. They are plotted and
interpreted as RGB images which makes the analysis of extracted features easier than
examining each depth channel individually. Because the filters are not bound to positive
values they can also learn negative values. Therefore the plot contains the positive filter
values on the left side and the negative ones on the right side. All values are normalized
by the largest absolute value of the filter set in each layer to give an impression of the
most influencing filter.

Figure 4.6 b) depicts a set of second layer filters. They operate on the filter maps created by
the previous convolutional layer and can therefore not be interpreted as RGB image. One
row still represents one filter, whereas the depths may vary depending on the number of
filters in the previous layer. Since the filter cannot be interpreted as RGB image anymore,
each depth layer of a filter has to be plotted separately. Additionally each depth layer
has to be split into negative and positive parts again, so that one depth layer is always
represented as pair of columns.

4.3.2 Weight Decay

To test the effect of weight decay, the network is only trained on the training set of the
original data base. For validation, the respective validation set is used. The system is
bound to overfit with 5,453 parameters and just 1,048 training images.
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Fig. 4.7: Progress of network error on training (blue) and validation set (red) during
training without usage of weight decay or data augmentation.

Figure 4.7 shows a plot of training and validation error progression during training. The
training error clearly converges to zero, whereas the validation error slightly diverges over
time. The validation error reaches its minimum at approximately training step 4,500.
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Fig. 4.8: Progress of network error on training (blue) and validation set (red) during
training with usage of weight decay regularization.

Figure 4.8 shows the same progression with activated weight decay. The regularization
penalty (s. Figure A.1) is not included in the error plot because this would introduce an
additional offset to both errors and make the comparison more difficult. It is clearly visible,
that the training error does not converge to zero as fast over time. The regularization
weight is set to λreg = 0.01 and was determined by evaluating the learning progress with
λreg = 0.001, λreg = 0.01 and λreg = 0.1.
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a) λreg = 0.1.
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b) λreg = 0.001.

Fig. 4.9: Training with different regularization weights λreg.

λreg = 0.1 penalizes the system too heavily, so that it is not able to learn diverse features
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and underfits (s. Figure 4.9 a)). λreg = 0.001 imposes to weak constraints, resulting in
similar error progression to the system without regularization (s. Figure 4.9 b)).

a) Filters learned wi-
thout weight decay.

b) Filters learned
with weight decay.

Fig. 4.10: Plot of first layer filters after training without a) and with b) weight decay
(λreg = 0.01).

Figure 4.10 depicts the first layer filters of both setups. 4.10 a) shows very specialized
characteristics, i.e. single peaks in different color channels. In contrast 4.10 b) shows
characteristics, which could be interpreted as extractable features of an image, like red
and green color, or a vertical edge. This leads to the conclusion that weight decay induces
more robust filter learning because it penalizes sparse weights more than evenly distributed
weight values.

4.3.3 Data Augmentation

The training and validation set partitioning has to be changed to evaluate the effect of
scaling HSV color model channels. If random images would be selected for validation, the
distribution of bright and dark images would be similar to the training set. To enforce
a difference in lighting conditions the validation set should be from another location
unrelated to the training data. Thus, all sets but the China set are used for training. The
China set is selected in particular for validation because it has relatively bright images
and differs from the rest in that regard.
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Training H S V

Brazil 0.436 0.403 0.366

RoHOW 0.308 0.577 0.424

TUHH N 0.404 0.480 0.520

TUHH Lab 0.254 0.441 0.547

HTWK Lab 0.336 0.494 0.522

E(Htrain), E(Strain), E(Vtrain) 0.364 0.495 0.445

Tbl. 3: Averaged HSV values of individual training sets and respective expected values.

Validation H S V

China 0.320 0.530 0.625

E(Hval), E(Sval), E(Vval) 0.320 0.530 0.625

Tbl. 4: Averaged HSV values of individual validation set and respective expected values.

The tables above contain the averaged HSV values of each set and the respective expected
values. Comparing the expected values yields, that the sets only differ by very small hue
and saturation values (0.044 and 0.034) but have a relatively big difference of 0.18 in
the expected brightness value. To test the effect of scaling the brightness value of images
to artificially introduce different lighting conditions the training set is modified. The V
channel of each image is scaled up by 1.4, which results in a new expected brightness
value of 0.623.

To evaluate and compare the performance on both sets the lowest validation error value is
taken. Since this value may vary depending on the random weight initialization both sets
were evaluated three times (s. appendix for error progression plots A.1.2). The average of
the lowest validation error values yields Err = 0.366 and Erraugmented = 0.363. The ave-
rage error value was decreased by only 0.003, which shows, that scaling brightness values
has almost no effect on the validation error, even if there is a known average brightness
difference and the scaling is targeted at this difference. Randomly scaling brightness can
therefore not introduce robustness against changing lighting conditions in this localization
network.

4.3.4 Model Selection

To determine, which filter size and number are best suited for the localization, all struc-
tures are trained until there is no more convergence of the validation error to zero or it
diverges. Section 4.3.2 already showed, that applying weight decay during training does
not completely prevent overfitting but nevertheless leads to less complex and thereby mo-
re robust features, even if the training set size is small (1048) compared to the trainable
parameter number (5453). To further enhance the robustness, the training and validation
is performed on original and augmented data to introduce additional deviations of robot
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positions. The training set contains the original images, the respective horizontally flip-
ped versions and cropped parts with a cropping window size of 480 × 360. This results
in 61,430 training images. Periodical validation during training should only take a small
portion of the actual training duration. Thus, only horizontal flipping is applied. This
results in a validation set of 700 images. With a validation interval of 100 training steps
and a training batch size of 32, the smaller structures, which use two filters in the first
layer and four in the second, take approximately 45 minutes for 10,000 training steps. The
larger ones need roughly 55 minutes for 10,000 training steps.

The notation of each structure is abbreviated to wfilt× hfilt - NoFlayer 1 - NoFlayer 2, where
the depth of each filter is always equal to its input. E.g. 5× 5 - 2 - 4 can be interpreted as
a network structure with two 5 × 5 filters in the first layer and four filters in the second
layer.
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a) 5× 5 - 2 - 4.
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b) 5× 5 - 4 - 8.
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Fig. 4.11: Error progression of each denoted structure during training without weight
decay.
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The plots above show the error progressions of the four proposed network structures
without utilizing weight decay during training. Regarding the validation error, none of
them shows signs of overfitting as training progresses. Plotting the learned filter however
demonstrates, that the networks still employ a slight overfitting behavior. The filter maps
of Figure 4.12 still have a patchy weight distribution over the different color channels.

a) 5× 5 - 2 - 4. b) 5× 5 - 4 - 8. c) 7× 7 - 2 - 4. d) 7× 7 - 4 - 8.

Fig. 4.12: Plot of first layer filters for each network structure.

Nevertheless some filters show the tendency to edge like features e.g. 4.12 a) first row,
4.12 b) first and second row. To further improve the learned filters, weight decay with the
previously tuned parameter λreg = 0.01 is applied.

a) 5× 5 - 2 - 4. b) 5× 5 - 4 - 8. c) 7× 7 - 2 - 4. d) 7× 7 - 4 - 8.

Fig. 4.13: Plot of first layer filters for each network structure.

Figure 4.13 shows the positive effect of weight decay. All filters have a more balanced
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weight distribution and are therefore less specialized on the training set. The edge like
feature filters are more distinct and less color specific, e.g. 4.13 b) row 4, 4.13 c) row 1.
The filters of the second layer show similar characteristics but are only depicted in the
appendix because they are more difficult to interpret (s. Figure A.3 and A.4). They are
more in numbers and extract features of features and can therefore not be interpreted as
RGB image anymore. Taking a look at the measurements of validation error, recall and
precision, supports the stated interpretation.

Network
Structure

Top Errval Recall Precision Network
Evaluation

Complete
Evaluation

5× 5 - 2 - 4 0.185 0.263 0.536 5 ms 33 ms

5× 5 - 4 - 8 0.147 0.317 0.606 5 ms 33 ms

7× 7 - 2 - 4 0.174 0.260 0.558 8 ms 37 ms

7× 7 - 4 - 8 0.141 0.321 0.602 8 ms 37 ms

Tbl. 5: Measured results after evaluation on validation set after training without weight
decay.

The performance of the network structures with more filters is clearly superior in validati-
on error, recall and precision. The localization performance of the weight decay regularized
model yields similar results. Comparing the results directly points out that the overall
recall and precision decreased for the 5×5 - 2 - 4 and 7×7 - 2 - 4 networks. This can arise
due to the fact that two filters might not be enough to extract all the necessary features
of the input data. Therefore, a small overfitted system can outperform a more generalized
system on the training and validation set.

Network
Structure

Top Errval Recall Precision Network
Evaluation

Complete
Evaluation

5× 5 - 2 - 4 0.193 0.238 0.510 5 ms 33 ms

5× 5 - 4 - 8 0.179 0.242 0.558 5 ms 33 ms

7× 7 - 2 - 4 0.191 0.225 0.515 8 ms 37 ms

7× 7 - 4 - 8 0.164 0.292 0.572 8 ms 37 ms

Tbl. 6: Measured results after evaluation on validation set after training with weight decay
(λreg = 0.01). Because weight decay regularization generally yields better filters for each
structure, only the regularized structures were trained three times (s. A.5, A.6, A.7) and
evaluated with respect to their average performance.

The performance of the larger structures 5 × 5 - 4 - 8 and 7 × 7 - 4 - 8 displays similar
results. The overall performance is worse than the performance of the respective non re-
gularized structures but the filters show a better generalization ability. The regularized
networks are therefore preferred over the non-regularized ones. The network structures
with 5× 5 filters need 33 ms for one complete evaluation, from loading the image into a
resized array, feeding it into the DCNN and interpreting the output. The actual network
evaluation takes only 5 ms. The networks with 7×7 filters need 8 ms for one network eva-
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luation and 37 ms for a complete evaluation. With a minimum complete evaluation time
of 30 ms all proposed network structures will fail on the Nao using this implementation
setup. However, there are two interesting observations.

1. The time for one network evaluation does not increase, although the number of
filters is doubled, whereas the filter size directly effects the computation time. It is
possible, that this is caused by internal processes of the TensorFlow library because
the number of necessary floating point operations of the 5×5 - 4 - 8 and 7×7 - 4 - 8
are closer to each other than the corresponding structures with half the filters (s.
Table 1). A faster performance could therefore be achieved by utilizing lower level
libraries for small DCNNs, at least for the actual feed forward applications.

2. The major part of computational time and effort is consumed not by the network
itself but by the data preparation. Since the image data can be accessed directly
on the Nao and efficient downsampling via scanlines is already performed, a Nao
adjusted implementation would have a better computational performance.

If the resulting evaluation times of Table 5 and 6 are independent of the implementation
and used libraries none of the proposed models would run within the predefined time
frame of 30 ms. However, the calculated number of necessary floating point operations
and the above stated observations suggest, that these network structures are suitable for
a real time application on the Nao. Because the 7 × 7 - 4 - 8 has demonstrated the best
overall localization ability, it is selected for the evaluation on the test set.

The performance on the test set will be discussed in section 4.4.

4.3.5 Model and Filter Evaluation

This section provides an analysis of the internal network output based on selected valida-
tion images. This allows a better understanding of each filter because the actual produced
output is visualized. The previously selected network structure (7× 7 - 4 - 8) is used for
this purpose.
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Input Image Conv. Layer 1 Max-Pooling

Fig. 4.14: Demonstration of separate first layer filters and max-pooling outputs for a given
input image.

Figure 4.14 shows the inter process output of the first convolutional layer and subsequent
max-pooling layer for an example input image of the validation set. Note that the filter
values and output layer maps are normalized with respect to the largest filter value in a
filter or with respect to the largest output value in a filter map. Thus, the influence of
each filter and output is visualized by its color intensity. The intensity rises from black
and dark colors to bright and white. The first filter scores green color positively and
red color negatively. This leads to an extraction of the soccer field in the general case.
White areas, which consist of red, green and blue values to the same amount, are scored
with zero since the filter values for the red and green channel cancel each other out. The
second filter is an inverted version of the first, although the ratio between the red and
green channel is different. The red filter channel is stronger and therefore highlights red
and bright white spots. Filter three shows a color insensitive behavior. It reacts with a
high output on inclined edges but is not distinctive enough. The resulting filter map is
mainly grey with only a few slight accents of oriented edges. A more distinctive filter for
edges should not react with positive outputs on a plain soccer field. The downsampling
of max-pooling worsens this indistinctive characteristic and makes this map very weak in
terms of information content. This can be the result of the limited filter number of four. To
draw important information of inclined edges, more filters with different orientations and
stronger distinction ability would be necessary. The fourth filter shows a better example
of a color insensitive edge filter. Although the positive part has a blue and the negative
part a red color tint, the filter highlights vertical edges in the resulting filter map and
discards plainly colored areas, like the actual soccer field.

The filter maps actually consist of positive and negative values but the latter ones are
neglected as they are very small and therefore not visible on the output maps. This results
from the leaky-ReLU with a scaling factor of 0.1 in negative value range. The complete
output can be seen in the appendix A.8.
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OutputConv. Layer 2 Max-Pooling

Fully Connected Layer

Fig. 4.15: Demonstration of separate second layer filter and max-pooling outputs and the
final interpretation of the DCNN.

Figure 4.15 shows the second stage of the internal process. The rightmost output of Figure
4.14 is the input for the second convolutional layer which is depicted above. The filters are
sorted from top to bottom and the depths layers from left to right. Each filter’s depth layer
appears as pair and is again separated in a positive part (left) and negative part (right).
E.g. the first two columns are the depth layers of all eight filters, which convolve the
first filter map of Figure 4.14. An interesting general observation of the filters is that the
negative weights have a larger influence in this layer except for the fifth and sixth columns,
which are the reason for this behavior. Because the third filter of the first layer produces
a filter map with only little distinctive information, these parts can hardly be further
interpreted resulting in a general positive offset in most of the filters. The filters operating
on the first two filter maps of layer one now ”look” for edge and shape like structures.
The last two columns of the second convolutional filter plot show the filter layers, which
operate on the map of vertical edges. The filters do not show a very generalized human
interpretable characteristic and do not have as much influence on the final result as the
filters operating on the first two outputs, which can be seen by the intensity of the grey
value. The first two output filter maps show a more downsampled version of an inverted
soccer field extraction, whereas the fourth output shows the extracted soccer field. The
third and seventh output map show the positions of the largest vertical edges on the
image which is basically the position of the Nao in the middle. The vertical edges could
be extracted that well because most of the Nao surrounding background is constantly
green. Output five and eight are the background parts of the image, which are not soccer
field and not Nao. The sixth output does not show any distinctive information and rather
seems like a constant. The responsible filter shows a similar feature characteristic of the
first layer. It depicts an inclined edge, which again results in a too even and indistinct
output.

Further insight can be drawn from another example of detected false positives. The figure
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below shows only the two filter maps after convolution (without max-pooling to provide
a more detailed view) and the resulting bounding boxes.

Fig. 4.16: Illustration of first and second convolutional layer output and the resulting
predictions.

The first convolutional layer output performs again field and background extraction. Ho-
wever, the Nao in the top left corner is too small and does not have enough contrast to
the background, so that it is basically treated as background. It also shows a bias towards
red color of the network filters because in the overall image set, which includes Naos with
blue, red and without jerseys, red is the most distinctive one. The most salient vertical
edges are the goal posts and the door in the top left corner. The outputs show the same
behavior as described for the first example image. However, two false positives are pre-
dicted. Looking at output map three and seven, shows the computed position of the most
salient vertical edges. The intensity of the ones in output seven is larger and also more
likely for a Nao because its located in the centric region of the image. Therefore two false
bounding boxes are predicted. The ”false” location, which should actually be on the goal
posts, can be traced back to the strong downsampling to a 3× 3 grid.

These results show that the predictions are based on color segmentation and vertical edge
extraction of the original and color segmented images. The network can predict locations
of robots, if they are in the foreground of the image and located on green floor. However,
two issues have to be discussed for further improvements.

1. The first layer filters have a bias towards red color. This characteristic results from
the training set and data base, which mainly contains images of Naos with blue or
red jerseys. Since the blue tone of the jerseys is not as distinctive as red, the filters
learn a bias towards red jerseys. Additionally, the jersey color is not predefined
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anymore in SPL games. Thus, learned filters should not have any bias towards a
jerseys color in further developments.

2. The third filter of the first convolutional layer does not produce a distinct output
of information but rather a constant output. This leads to co-adaption of filters
in the second layer filters. I.e. filters of the subsequent layer rely on the presence
of this constant output and therefore learn e.g. more negative filter values. This in
turn results in unnecessary computations, less robustness and makes the filters more
difficult to analyze. [29] proposes a method called Dropout to prevent co-adaption of
filters and overfitting which is not further evaluated here but an interesting approach.

4.4 Test Results and Discussion

The original test set of 350 images is extended by horizontal flipping and image section
cropping to 21,000 images. The following table depicts the recall and precision for both
methods.

Method Recall Precision Complete
Evaluation

Training
Time

BING 0.210 0.004 20 ms 15 min.

DCNN 0.293 0.619 37 ms 160 min.

Tbl. 7: Measured results after evaluation on validation set after training with weight decay
(λreg = 0.01).

BING has obviously a worse recall and precision ability but needs only half of the complete
computational time for an image evaluation. In general both methods suffered from large
image inputs. In the case of BING, a large input raises computational time and promotes
unnecessary prediction errors which in turn significantly reduces precision and recall (s.
section 4.2.2). It is therefore not recommendable as object localization method in the
available implementation of [16]. Since the data augmentation techniques were taken from
sources related to DCNNs the augmentation was biased towards these. The presented
results could thus have been slightly better but the general problem of this approach stays
unaffected. The DCNN approach suffered from the input dimensions primarily in terms of
computational time. It internally only operates on a 136× 136× 3 RGB image but input
data is provided as 640×480×3 RGB image. About 3

4
of the computational time goes into

loading and downsizing the original input. Thus, the implementation cannot be directly
transferred to the Nao. Taking into account that image resizing is already performed
on the Nao, the proposed network structures in a lower level implementation could be
tested on the Nao for further evaluation of computation time. The training duration for
the DCNN is more than 10 times longer than for BING but with approximately 165
minutes still maintainable because several training runs can be performed within one day.
Furthermore, only CPU computing was used, so that training with a GPU would result
in shorter training duration.

In regard to the original project description, the overall results show that the BING
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method does not yield sufficiently precise results whereas the DCNN approach needs too
much computational time. However, the evaluation of both approaches offered insight into
the respective object localization reasoning of each system and also suggestions to amend
the stated problems for further implementations and research (s. section 4.2.2 and 4.3.5).
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5 Conclusion and Outlook

The goal of this work was to apply a DCNN to the problem of object localization on
images in the scenario of robot soccer and analyze the trained system. Another machine
learning method, which utilizes two SVMs and normalized gradient images, was applied
to the same task for comparison.

Chapter 1 introduced the background and fundamentals of both methods to provide a
basic understanding of each. Based on that, chapter 2 described the used approaches with
respect to their concept and implementation. Especially the proposed DCNN structure
had to be redesigned to meet the limiting hardware constraints. Since training is the
essential part of machine learning, chapter 3 points out typical problems, which should
be considered in machine learning and suggests solutions to resolve these. Finally, chapter
4 presents both methods in terms of their localization performance and explores the
reasoning of each trained system, which lead to the final results.

In the course of this, a suitable network structure was developed and implemented with
respect to the hardware constraints. To resolve the general problem of overfitting due to
a lack of training data instances, three methods were applied in combination. For this
purpose three data augmentation techniques were implemented to extend the number of
training samples. The implementation of the image contrast based approach called BING
was taken from the respective author and therefore only varied in its hyperparameters.
Both methods struggled to meet the predefined limits of the hardware constraints. Howe-
ver, they still offer the potential to be used on the Nao, if re-implemented with respect
to the following suggestions. The BING method would benefit from smaller input images
because it tries to detect very small objects on the original sized image, which is not
necessary in robot soccer. The input dimension reduction would also decrease the proces-
sing time and make this approach faster because the input is resized several times during
prediction. The DCNN also spend a major part of processing time on resizing the input
to the desired dimension. Since the necessary dimension reduction is only performed once
before being fed into the DCNN, the structure of the DCNN could be altered to take the
already present down scaled images of other modules running on the Nao. The results
also showed that the TensorFlow library is not suitable for the real application of small
scale neural networks, although it offers in combination with Python several convenient
options to track the learning process. It is therefore recommendable to utilize lower level
libraries for a real time application.

A two layer robot classifier was also implemented as a byproduct of this work for the
use of weight transfer to the localization network. Unfortunately, it could not be properly
evaluated due to limited time constraints. Nevertheless, it showed precision values of up to
70 % and recall of over 50 % on several validation runs. It would therefore be interesting,
if the BING approach can be turned into a more selective and precise object localizer for a
limited set of objects like it is given in robot soccer. The suggestions stated in the previous
chapter could therefore be tested and evaluated in future works. The combination of a
fast proposal generator and a small classifier DCNN could yield a very efficient object
detection method.
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In general the lack of training data for object localization posed a non-negligible problem,
which can hardly be performed by computer programs alone. Marking objects on images
often requires human expertise and results in very time consuming work. To simplify
this, further research could be conducted to implement a multi-class object labeling tool,
which could then again be extended to generate object proposals itself and only requires
human post-editing. To additionally enhance existing image sets, more data augmentation
techniques could be explored in terms of their effect and suitable target application. Dif-
ferent augmentation techniques might be suitable for object classification or localization.
DCNNs in general offer multiple parameters to change like the filter size, filter number in
each layer, layer number, types of layers, input dimension, activation function etc. just in
the case of a DCNN. In this work only the filter size and number were slightly varied and
evaluated. Therefore, deeper research could be performed in terms of optimal network
layouts for a specific task like classification on the MNIST, CIFAR-10 or CIFAR-100 data
set.
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A Appendix

A.1 Evaluation

A.1.1 Weight Decay
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P enalty: Weight Decay

Fig. A.1: Regularization loss during regularization test in chapter 4.
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A.1.2 Data Augmentation
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Fig. A.2: Training and validation error progression during training of HSV color model
augmentation test. a) - c) without targeted augmentation, d) - f) with targeted augmen-
tation.
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A.1.3 Model Selection (DCNN)

a) 5× 5 - 2 - 4. b) 5× 5 - 4 - 8.

c) 7× 7 - 2 - 4. d) 7× 7 - 4 - 8.

Fig. A.3: Plot of second layer filters for each network structure. Learned without weight
decay.
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a) 5× 5 - 2 - 4. b) 5× 5 - 4 - 8.

c) 7× 7 - 2 - 4. d) 7× 7 - 4 - 8.

Fig. A.4: Plot of second layer filters for each network structure. Learned with weight
decay.
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Fig. A.5: Error progression of DCNN model selection during first training run with weight
decay.
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Fig. A.6: Error progression of DCNN model selection during second training run with
weight decay.
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Fig. A.7: Error progression of DCNN model selection during third training run with weight
decay.
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A.1.4 Model and Filter Evaluation

a) Output of first convolu-
tional layer.

b) Output of first max-
pooling layer.

c) Output of
second con-
volutional
layer.

d) Output of
second max-
pooling layer.

Fig. A.8: Plot of inter layer outputs for example image in filter analysis section.
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