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Chapter 1

Introduction

Robotic systems are increasingly becoming an integral part of everyday life and are
already indispensable in many areas today. While the first industrial robots are already
in use for almost a decade, autonomously operating robotic systems are only used in the
recent research and industry. Since 1997, the RoboCup has been organizing an annual
competitions of autonomous systems in different disciplines.

This thesis is written in the context of the RoboCup Team HULKs of the Hamburg Uni-
versity of Technology (TUHH), which is participating in the Standard Platform League
(SPL). This chapter provides a brief overview about the RoboCup and the SPL, as well
as the used robotic system NAO and explains the motivation and goals of this thesis.

1.1 The RoboCup

In May 1997, when IBM Deep Blue defeated the human world champion Garry Kas-
parow in chess, forty years of challenge in the AI community came to a successful
conclusion [1]. On July 4, 1997, NASA’s MARS Pathfinder mission made a successful
landing and the first autonomous robotics system, Sojourner, was deployed on the sur-
face of Mars [2]. Together with these accomplishments, RoboCup was founded in 1997.
The idea was to build robots who are able to play soccer and beat the human World Cup
champion team by 2050 [3]. Today, the RoboCup consists of various soccer leagues, as
well as competitions for housekeeping, rescue or industrial robots.

1



1.2 The NAO Robotic System 2

1.2 The NAO Robotic System

The NAO Robotic System, hereafter referred as NAO, is a 58cm high humanoid robot
from SoftBank Robotics. It is continually developed since 2006 and currently available
in the fifth version [4], an example can be seen in 1.1. The NAO is used by the RoboCup
SPL Teams as well as in this thesis.

Figure 1.1: Two HULKs NAO robots defending against BHuman at the RoboCup Ger-
man Open 2018.

The computer in the NAO is based on a 1.6 GHz Intel Atom Z530 and 1 GB RAM. It
has two cameras, each with a maximum resolution of 1288x968 pixels and a field of
view of 72.6◦ [5]. The perceptional fields of the cameras overlap only partially, hence
no stereoscopic vision is possible.
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1.3 The Standard Platform League (SPL)

As mentioned, there are several soccer leagues in the RoboCup, each working on a
different goal of research. One of those is the Standard Platform League (SPL) where
all participating teams use the same robot, namely the NAO robot. As every team uses
this platform, this league is focused on implementing fast and robust software for real-
time soccer purposes.

The NAO robots play fully autonomously and each one takes decisions separately from
the others. Each team consists of five robots, playing together using communications.
According to the rules, the games are played on a green field of artificial turf of size
9× 6m with white lines and goal posts, with no other landmarks [6]. To improve the
league every year, the rules of the SPL games get continuously adapted towards those
of a real soccer game. Since 2016, the ball is a realistic white and black soccer one [7].

1.4 Motivation

With the success of the HULKs in recent years demands on the world model increased
alongside. Until now, the robots perception of the outside world consists of a line and
ball detection from the camera image as well as near field obstacles using sonar. A robot
detection is necessary to be able to react to opponent robots for strategic decisions.

Approaches based on convolutional neural networks for object detection lead to promis-
ing results in previous work [8], [9], [10]. These methods save a lot of work, as no
manual feature extraction is necessary.

One drawback of neural network based methods is the large amount of computation time
during the inference. To reduce the overall expense of the object detection, a multi-class
detector which is able to perceive balls and robots at the same time is desirable.

Another problem is the large amount of hyperparameters for such classifiers. Our re-
cent work already produced useful results using genetic algorithms for optimization [8].
With increasing amount of hyperparameters the effort of executing a genetic algorithm
on such a search space highly increases. In the area of game theory, there are many al-
gorithms designed to handle such large search spaces. To make use of game tree search
algorithms, the problem of designing a multi-class classification network has to be for-
mulated as a board filling game. The central idea of this thesis is to develop a multi-class
object detection framework for the NAO robot using optimized convolution neural net-
works. For the optimization step an Monte Carlo tree search based method is developed
and compared against genetic approaches.
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1.5 Goals

The aim of this thesis is to develop a multi-class object detector to perceive balls and
robots at the same time on the NAO robotic system. A framework for collecting and la-
beling data is to be implemented. Based on this data a region of interest search is needed
to find areas on the image that may contain the objects. Those candidates alongside
with the labeled ground truth can then be used to train a CNN classifier. By formulating
the design of this classifier as a board filling game, it can be optimized using a game
tree search algorithm. Therefore, a Monte Carlo tree search based framework will be
implemented and compared against existing genetic approaches.

The resulting classifier should be able to achieve a similar classification performance on
the ball class as the current one [8, p. 35]. As there is no robot detection in the HULKs
software framework yet, the classification performance should build a descent baseline.

1.6 Related Work

In the field of neural network research, there has been a lot of interest in automatically
learning network architectures recently. [11] proposes a method using genetic algo-
rithms for evolving the architectures and connection weight initialization values of a
deep convolutional neural network to address image classification problems. Recent re-
search within the HULKs team demonstrate application for optimizing hyperparameters
for convolutional neural networks in real-time applications for single class problems
[8], [12].

Beside genetic or reinforcement learning approaches, game tree search based methods
became popular recently. [13] proposes a method for learning the structure of CNNs
using a sequential model-based optimization strategy, searching for structures in order
of increasing complexity. [14] describes a framework for automatically designing and
training deep models using Monte Carlo tree search and sequential model-based opti-
mization, outperforming random search. An extension for solving algorithm configu-
ration is shown by [15] for general algorithm configuration problems, allowing many
categorical parameters and optimization for sets of instances.

Within the field of RoboCup there is currently only one team known to use a multi-class
object detector on the NAO. The approach of NAO Team HTWK achieves a recall of
50% of all robots, 93% of balls and 78% of penalty spots - with an overall precision
higher than 99%. [16]
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1.7 Problem Overview and Thesis Structure

The prerequisites chapter explains the basic terms, used software and the algorithm
which was developed as a part of this thesis. The data acquisition chapter shows, how
the data used for learning the models was generated, labeled and set up.

After the data is set up properly, the network architecture can be optimized for the prob-
lem using an optimization algorithm, as described in chapter model training and opti-
mization. The evaluation of the hyperparameter optimization can be found in chapter
evaluation. This also covers the comparison to previous work on hyperparameter opti-
mization as well as the inference of the resulting network on the NAO.

Finally, chapter conclusion and outlook summarizes the thesis and gives an outlook to
possible future work.



Chapter 2

Prerequisites

In this chapter, the basic terms for this thesis are explained. It also includes the used
software and libraries as well as a brief description of the Monte Carlo tree search,
artificial neural networks and convolutional neural networks.

2.1 Basic Terms

There are many common terms in the field of machine learning and artificial intelli-
gence. As this thesis focuses on MCTS optimization and convolutional neural networks,
these terms itself and related ones are explained.

2.1.1 Metrics

The classifier, which maps an example image to a class, is evaluated using the following
metrics. For each class c, the set of positives pc is the set of example candidate images
containing an object of this class. The other candidate images are assigned to the set of
negatives nc.

True positives (tpc) are those examples from the setup pc, which were assigned to class
c by the classifier. The true negatives (tnc) are those examples from the sets nc, which
were not assigned to an object of class c, respectively. False positives / false negatives
(fpc / fnc) are the images from pc / nc, which were assigned to the wrong class.

The true positive rate of a class c is the relative amount of correctly assigned examples
within the set pc: TPRc =

|tpc|
|pc|

. The true negative rate is analog: TNRc =
|tnc|
|nc| .

6



2.2 Used Software 7

2.1.2 k-Fold Cross-Validation

In k-fold cross-validation, sometimes called rotation estimation, the dataset D is ran-
domly split into k mutually disjoint subsets (the folds) D1,D2, ...,Dk of approximately
equal size. The classifier is trained and tested k times; each time t ∈ {1,2, ...,k} it is
trained on D \Dt and tested on Dt [17, pp. 2–3]. Figure 2.1 illustrates a 4-fold cross
validation.

Figure 2.1: Diagram of k-fold cross-validation with k = 4. [18]

2.2 Used Software

2.2.1 HULKs NAO Framework

The HULKs NAO Framework is the software which runs on the NAO during SPL
games, written in C++. It can also be used for testing and debugging purposes, together
with the MATE tool. Beside the NAO, it has multiple more compile targets, i.e. running
the software with SimRobot.

2.2.2 HULKs MATE

The HULKs framework features a debugging and configuration interface called MATE.
It is possible to export variables (including images) with an associated name so that they
can be sent to a PC or written to a log file. It is able to connect to a running instance
of the HULKs framework via a TCP or Unix socket and provides a user interface. Data
can be displayed in several types of views listed in table 2.1.
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Table 2.1: Debugging Views of MATE.

View Description

Text Prints arbitrary data structures in JSON format.
Image Displays JPEG compressed images that are sent by the NAO.
Config Interface to query and edit configuration values at runtime on the

connected target
Plot Views plots of a numeric value over time. Multiple variables can be

plotted color-coded in the same panel. The value range can be determined
automatically and the number of samples can be adjusted.

Map View to display various position related information such as robot poses
or ball positions on a two dimensional area of arbitrary size, e.g. a SPL
field.

A specific setup of views can be stored and loaded as file to allow for fast access to often
used view combinations.

2.2.3 TensorFlow

TensorFlow is an open source software library for numerical computation using data
flow graphs. Nodes in the graph represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) communicated between them.
The flexible architecture allows to deploy computation to one or more CPUs or GPUs on
a desktop, server, or mobile device with a single API. TensorFlow was originally devel-
oped by researchers and engineers working on the Google Brain Team within Google’s
Machine Intelligence research organization for the purposes of conducting machine
learning and deep neural networks research, but the system is general enough to be
applicable in a wide variety of other domains as well. [19]

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are computing systems inspired by the neurons of a
natural brain. Inputs are fed into a network of neurons which processes the information.
Figure 2.2 shows the structure of an ANN.
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Figure 2.2: An artificial neural network is an interconnected group of nodes, akin to
the vast network of neurons in a brain. Here, each circular node represents an artificial
neuron and an arrow represents a connection from the output of one neuron to the input
of another. [20]

2.3.1 Neurons

As in a natural brain, the computation is done by a composition of single neurons.
Figure 2.3 shows the functionality of those.

∑ f

bj

w1j

wnj

1

x1

xn

...
yⱼ

Figure 2.3: The functioning of a single neuron j. First, the input vector gets element-
wise multiplied by the weight vector. Afterwards the bias is added to the sum of the
resulting vector. Finally, the value is applied to the activation function, yielding the
output of the neuron.

Given a layer of k neurons with input vector x ∈ Rn, weight matrix W ∈ Rk×n and bias
vector b ∈ Rk. The result of neuron j can be computed as y j = f (W. jxT + b j), where
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W. j is the j-th column of W . Hence a whole layer of neurons can be computed as
y = f (WxT +b).

2.3.2 Activation Functions

In biology, a neuron “fires” in a non-linear way depending on the input [21, p. 1065].
In ANNs, this is achieved by applying an activation function to every value of a layers
output. In this thesis, the following activation functions are investigated.

Hyperbolic Tangent (TANH)

The hyperbolic tangent is a S shaped function which maps the input to the range [−1,1].
It can be used as a differentiable model for binary output.

TANH(x) =
ex− e−x

ex + e−x (2.1)

Rectified Linear Unit (ReLU)

The ReLU function has become one of the most popular activation functions for neural
networks, due to the computation simplicity. It maps every positive input to itself, while
dropping all negative inputs to zero.

ReLU(x) =

{
x ,x > 0
0 ,otherwise

(2.2)

2.4 Convolutional Neural Networks

CNNs have become very popular in recent years for object detection in images. It is the
leading approach in various benchmark datasets. For example, in the MNIST dataset,
CNN based approaches achieve the best results with a test error rate of down to 0.23
[22]. In the CIFAR-10 dataset, CNNs achieved a accuracy of up to 96.53% [23].

They extend ANNs by adding convolutional, pooling and normalization layers before
fully connected layers which then calculate the final output.
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2.4.1 Convolutional Layer

Convolutional layers apply a trainable convolution mask on the input. In this thesis,
only 2-dimensional convolutions are used, meaning a input image with q channels is
mapped to an output image with k channels. Equation eq. 2.3 shows the computation of
a convolutional layer.

yi, j,k = ∑di,d j,q xi+di, j+d j,q ·mdi,d j,q,k

x ∈ Ri× j×q,m ∈ Rdi×d j×q×k
(2.3)

2.4.2 Pooling Layer

Pooling layers are used for downsampling images between convolutional layers. They
reduce every dimension of every image channel by applying a reduce function to neigh-
bouring pixels. This work focus on max(a,b,c,d) (maximum value of arguments) and
avg(a,b,c,d) (arithmetric mean of arguments) as pooling functions. Figure 2.4 demon-
strates a 2x2 max-pooling layer for a single channel image.

Figure 2.4: Schematic drawing of a 2x2 sized max-pooling layer downsampling an 4x4
input to 2x2 with a stride of 2 so that no overlapping occurs. [24]

2.4.3 Local Response Normalization

ReLUs have the desirable property that they do not require input normalization to pre-
vent them from saturating. If at least some training examples produce a positive input to
a ReLU, learning will happen in that neuron. However, it can still be found that the fol-
lowing local normalization scheme aids generalization. Denoting by ai

x,y the activity of
a neuron computed by applying kernel i at position (x,y) and then applying the ReLU
nonlinearity, the response-normalized activity bi

x,y is given by the expression [25, p. 4]:
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bi
x,y =

ai
x,y(

k+α ∑
min(N−1, i+n

2 )

j=max(0, i−n
2 )

(a j
x,y)2

)β
(2.4)

where the sum runs over n adjacent kernel maps at the same spatial position, and N is
the total number of kernels in the layer. The ordering of the kernel maps is of course
arbitrary and determined before training begins. This sort of response normalization im-
plements a form of lateral inhibition inspired by the type found in real neurons, creating
competition for big activities amongst neuron outputs computed using different kernels.
The constants k,n,α,β are parameters whose values are chosen by the recommonda-
tions of [26].

2.5 Monte Carlo Tree Search

Monte Carle Tree Search (MCTS) is a method for finding optimal decisions in a given
domain by taking random samples in the decision space and building a search tree ac-
cording to the results [27]. It has already had a profound impact on artificial intelligence
approaches for domains that can be represented as trees of sequential decisions such as
games.

MCTS uses two policies to build the search tree, namely the tree and the rollout or
default policy [14]. The tree policy determines the path to be traversed from the root to
a bottom node of the already expanded tree. The path from the leaf of this bottom node
to a leaf is then determined by the rollout policy. A leaf node can be evaluated to the
true result, e.g. by training and evaluation of a resulting network. The score is used to
update the statistics of the nodes in the current path, starting from the root. Each node
in the expanded tree keeps statistics about the number of times it was visited and the
average score of the models that were evaluated in the subtree at that node.
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2.5.1 Algorithm

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Figure 2.5: One iteration of the MCTS algorithm. [27, p. 6]

The MCTS algorithm works in an iterative way and yields the current best play estimate
after each iteration. figure 2.5 shows one iteration of the basic MCTS algorithm. Each
node in the search tree represents a state of the domain, and directed links to child
nodes represent actions leading to subsequent states. Every iteration consists of the
following steps: Selection, Expansion, Simulation and Backpropagation. Algorithm 1
summarizes those steps.

Algorithm 1 General MCTS approach. v0 is the root node corresponding to state s0.
vl is the last node reached during the tree policy stage and corresponds to state sl . The
reward from the terminal state reached by the rollout policy from state sl is assigned to
∆. a(bestChild(v0) is the action a that leads to the best child of the root node v0.

1: function MCTS(s0)
2: v0← createRootNode(s0)
3: while keepRunning() do
4: vl ← treePolicy(v0)
5: ∆← rolloutPolicy(s(vl))
6: propagate(vl,∆)
7: end while
8: return a(bestChild(v0))
9: end function
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Selection

Starting at the root node, the tree policy is recursively applied to descend through the tree
until the most urgent expandable node is reached. A node is expandable if it represents
a non terminal state and has unvisited (i.e., unexpanded) children.

Upper Confidence Bound The most popular algorithm in the MCTS family is the
upper confidence bound for trees (UCT). It is very simple and efficient and guaranteed
to be within a constant factor of the best possible bound on the growth of regret. It is
thus a promising candidate to address the exploration–exploitation dilemma in MCTS:
every time a node (action) is to be selected within the existing tree, the choice may be
modeled as an independent multi-armed bandit problem. A child node j is selected to
maximize

UCT = X j +2Cp

√
2lnn

n j
(2.5)

where n is the number of times the current (parent) node has been visited [27]. n j is
the number of times child j has been visited and Cp > 0 is a constant. Ties are decided
randomly.

Sequential Model Based Optimization Model-based optimization methods construct
a regression model that predicts performance and then use this model for optimiza-
tion. Sequential model-based optimization (SMBO) iterates between fitting a model
and gathering additional data based on this model. In the context of parameter opti-
mization, the model is fitted to a training set

S = {(Θ1,o1),(Θn,on)}

where Θi is a complete instantiation of the target algorithm parameters and oi is the
performance of the algorithm using the parameters Θi. [15, p. 3] Using such a model
as tree policy enables the possibility for the MCTS to share information between nodes
other than through common ancestors. This can be addressed by introducing a surro-
gate function [14] which can be used to capture relationships between models and how
promising it is to evaluate any specific model. As the optimization of the tree policy ex-
ceeds the scope of this thesis, this is left for future work.
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Expansion

One (or more) child nodes are added to expand the tree, according to the available
actions. The available actions are determined by the game rules.

Simulation

A simulation is run from the new node(s) according to the default policy to produce an
outcome.

Backpropagation

A score is determined based on the result of the simulation and is propagated back to
the root node by updating the statistics of the nodes on the path.

2.6 Genetic Algorithm

Genetic algorithms (GAs) were already evaluated in previous work [8]. They led to
promising results for optimizing CNNs hyperparameters and will be used as benchmark
for the MCTS optimization.

The method used in this work follows a genetic algorithm pattern [28]. The basic ele-
ments are chromosomes or individuals c ∈ S, a possible solution in given k-dimensional
search space S. The algorithm works in an iterative manner with a fixed number of
generations N. A set of n chromosomes used during iteration j is called population
Pj = {c1, ...,cn} ⊂ S. The initial population P0 is generated randomly. In each gen-
eration j ∈ [1,N] the population of the previous iteration is evaluated using a fitness
function f (c) : Ck 7→ R. Given the previous population and its individuals’ fitnesses a
set S j is selected from Pj−1 as parents. In the next step a mutation function will be ap-
plied to every element in S j. Finally, mutated parent elements are recombined yielding
next generation Pj.

2.6.1 Selection

The selection is done using the following steps. According to a given clipping param-
eter c ∈ [0,1] individuals in the lower c percentile are dropped. The minimal fitness
within the population is given by mink∈[1,n]( f (ck)). Given the other m individuals the
probability of surviving is calculated by equation (2.6).
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p(ci) =
f (ci)−minscore

∑
m
j=1

(
f (c j)−minscore

) (2.6)

Hence, the individual with the lowest fitness value is assigned to the survival proba-
bility zero. According to this distribution, n elements are sampled for mutation and
reproduction.

Elitism

A common variant of GAs is to allow one or more of the best organisms from the current
generation to carry over to the next, unaltered. This strategy is known as elitist selection
and guarantees that the quality of the best solution in each generation monotonically
increases over time. Without elitist selection, it is possible to lose the best chromosome
due to stochastic errors [29, p. 2].

2.6.2 Mutation

For every value within chromosome c a new value will be sampled based on a given
mutation probability pm. If a gene is to be replaced a new random value is chosen.

2.6.3 Reproduction

In the reproduction phase the selected and mutated chromosomes are pairwise randomly
sampled. Each pair yields two new children. For every value within the chromosome of
a child, the corresponding parent value is chosen randomly.



Chapter 3

Data Acquisition

This Chapter describes the collection and setup of the data. Section 3.1 describes how
the raw data was collected from the robot. The raw data was then labeled with ground
truth and integrated into the framework as described in section 3.2. Section 3.3 shows
how the region of interest search was developed and logged together with the ground
truth. Given those results, datasets for training and testing are generated and set up as
shown in section 3.4.

3.1 Collection of Images and Metadata

In our previous work the candidate generation was implemented directly within the
framework. The results were logged to disk directly on the robot. There are multiple
drawbacks of this method. This way, all data which is already collected becomes useless
as soon as the candidate generation changes. Also, the real detection rate cannot be
determined as there is information about how many objects were missed.

Therefore a framework for collecting data has to be reworked. A module was developed
which receives the image and sensor data as well as metadata like which buttons were
pressed. Within a fixed rate, the module checks whether a frame can be recorded. Al-
gorithm 2 describes a single cycle of this module.

The collected frames can be used by the HULKs framework. This is done by a virtual
robot interface, which reads the recorded frames as sensor data.

17
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Algorithm 2 ReplayRecorder::cycle
1: if !allDepenciesValid() then
2: return . Only record if the data is available
3: end if
4: if bodyPose->fallen then
5: return . Do not record in fallen state
6: end if
7: if onlyRecordWhilePlaying_() && gameControllerState_->state != GameS-

tate::PLAYING) then
8: return . Only record while playing if configured
9: end if

10: if gameControllerState_->penalty != Penalty::NONE then
11: return . Only record when unpenalized
12: end if
13: if writeThreadBusy_ then
14: return . Only record when currently not busy
15: end if
16: if currentFrame.camera == imageData_->camera then
17: return . Only record when camera is different to last one
18: end if
19: if secsSinceLastFrame() < minSecBetweenFrames_() then
20: return . Only record when timeDiff to last log is high enough
21: end if
22: startRecordFrame();

3.2 Labeling of Raw Data

In order to set up a proper train and test data set, the ground truth for the given data is
needed. Therefore every object on every collected image which is to be trained needs to
be annotated. To do this in a collaborating manner, a web based tool called ‘annotate’
[30] is developed. It is divided into a server and a client part. The labelled data can be
integrated into the replay framework mentioned in the last section.

3.2.1 Server

The annotate server REST API ([31], [32]) is written in TypeScript [33]. It is used to
handle a database of images together with their annotations. It serves the following
interfaces:
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Table 3.1: Overview of the annotate server interface.

Interface Method Description

/v1/auth POST Request an OAUTH [34] authentication token for
highscores

/v1/auth/clien-
tId

GET Request the client id given a token

/v1/image GET Request a random image from the database
/v2/image GET Request a random or specific image from the database
/v1/image POST Send the label data for an image to the server using

absolute image coordinates
/v2/image POST Send the label data for an image to the server using

relative image coordinates
/v1/stats GET Get the current amount of labeled / remaining images

in the database
/v1/labels GET Get the label types which need to be collected
/v2/labels GET Get the label types for whole image and bounding

boxes
/v3/labels GET Get the label types for whole image, bounding boxes

and lines
/v1/scores GET Get the current high score list

3.2.2 Client

The client side of annotate is written in TypeScript [33] using the following libraries:

Table 3.2: Libraries used by the annotate client.

Library Description

axios [35] REST [31] client for querying the server
react [36] Framework for User Interfaces
bootstrap [37] Framework for User Interface Design
redux [38] State container framework for JavaScript Applications

The client provides an easy to use and very fast way to mark objects on the images such
as lines and boxes. Beside the objects, a label for the whole scene can be applied in order
to sort out images which are not useful for the training set. Figure 3.1 illustrates the
user interface of the annotate client. For this thesis, over 20000 images where annotated
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with robots and balls.1

Figure 3.1: User Interface of the annotate[30] client. Header: User Login for High-
scores, Selection of the keyboard layout; Top Left: An annotated image containing a
robot and a ball. Top Center: The selector for the image label and the next object label.
Top Right: Overview of existing object labels, Send button. Bottom Right: Address of
the current image, interface to reload previous images.

3.3 Region of Interest Search

Due to the limited computation capabilities of the NAO, not the whole image can be
inferenced by a neural network. Therefore, a deterministic region of interest is needed
to provide candidate regions to be classified. This is done in multiple steps.

First, the image is preprocessed into gradient based segments. Afterwards, a set of
sliding windows is created and scored based on the image segments. The selection of
windows to classify is done based on the sliding windows and their scores. Finally, the
selected windows positions are corrected and similar ones are merged.

1Many thanks to all the HULKs supporting me labeling all those images. Special thanks to the leaders
of the annotate high score board: Konrad Nölle, Lasse Peters, Rene Kost, Felix Wege and Pascal Loth.



3.3 Region of Interest Search 21

3.3.1 Image Segmentation

As first step of the region of interest search the image is divided into segments for
faster computation. Currently the image segmentation consists of vertical scanlines in
every fourth column of the image. With this approach, objects in further distance can
disappear between those scanlines while closer area is sampled in a very high resolution.
Approaches with projected sample points with fixed distance in world coordinates could
be a solution for this problem.

The robots usually have a large backlash in joints and the camera extrinsics are very
sensible to forces from outside, e.g. when the robot falls down in a game. Projected
approaches suffer from those problems due to the unstable projection. As a compromise
the projection is done by a fixed camera to ground matrix which is close to the average
projection matrix is used as figure 3.2 illustrates.

(a) top image (b) bottom image

Figure 3.2: Sample points of horizontal image segmentation.

The edge detection along the scanlines is done similar to the vertical scanlines [39, pp.
16–18]. The gradient is determined by

g(x) =
1
2
( f (x−1)+ f (x+1)) (3.1)

where f (x) corresponds to the image value at pixel x. The local maxima and minima of
the symmetrical gradient provide information about the exact position of an edge. The
threshold value tedge allows to define a minimum height from which an intensity jump
is detected as an edge. The algorithm calculates the symmetrical gradients first between
two brightness values. If this is outside the interval [−tedge, tedge] or if it is larger than a
temporary maximum gradient, it replaces it. The corresponding position is stored as a
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peak. As soon as the next gradient is in the interval [−tedge, tedge], the last stored peak
is used as the edge. The symmetric gradient is calculated between two pixels, so this is
even in between. The algorithm corrects the peak position xpeak and places the edge
at the correct position. Figure 3.3 shows the result of the algorithm for an example
scanline.

(a) Sample signal of the y channel from a scanline with 480 values. [39, p. 16]

(b) Visualization of the gradient eq. 3.1 and the interval given by tedge. [39, p. 17]

Figure 3.3: Results of the symmetric gradient algorithm.

3.3.2 Scored Sliding Windows

The next step is to find areas of the image that may contain objects. In our case, the
objects yield much more edges than their background, which mainly consists of plain
green carpet. The problem is that robots and balls are of different size and may occlude
or overlap each other within the image.
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The size issue can be fixed by not searching for the whole robot but just for its feet,
which are approximately of the same size as the ball. While one can not prevent occlu-
sion, overlapping becomes less bad when only the lower parts near to the ground are in
scope.

In order to find areas which contain many edges, a sliding window of the size of the
robots feet is swiped through the image with a step size equal to the window size. For
each window, the number of edges based on the horizontal image segments are counted,
as figure 3.4 illustrates.

(a) The resulting sliding windows on the up-
per camera. The white frame marks the
boundary of the sliding windows. Rising
edges determined by the image segmentation
are marked by red circles. Green circles cor-
respond to falling edges.

(b) The resulting sliding windows on the
lower camera. The white frame marks the
boundary of the sliding windows. Rising
edges determined by the image segmentation
are marked by red circles. Green circles cor-
respond to falling edges.

(c) The resulting scores for the sliding win-
dows on the upper camera.

(d) The resulting scores for the sliding win-
dows on the upper camera.

Figure 3.4: Results of the scored sliding window module.
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3.3.3 Selection of Sliding Windows

After creating and scoring the sliding windows the windows to classify are selected
and corrected in position. A window gets selected for classification when it matches
the following conditions. First, the window has to contain more edge points than a
configured threshold. Then, the window must be inside the field border determined by
the framework. Finally, as a filter for the fields lines, the pearson correlation coefficient
for the rising and falling edges is calculated [40, pp. 240–242]:

r =
(∑N

i=0 xiyi)− (∑N
i=0 xi)(∑

N
i=0 yi)/N√

(∑N
i=0 x2

i )− (∑N
i=0 xi)2/N

√
(∑N

i=0 y2
i )− (∑N

i=0 yi)2/N
(3.2)

where N is the number of edge points and xi,yi their image coordinates. As edge points
in windows only containing a field line lay on a line, they result in a low correlation
coefficient. Windows with a coefficient lower than a configured threshold won’t get
selected.

3.3.4 Position Correction and Merging

After selecting windows by the criteria mentioned in the previous section, the windows
are still not well aligned on the objects. Therefore, the windows are shifted into the cen-
ter of their edge points. Afterwards, overlapping windows get merged as algorithm 3
shows. The algorithm also filters areas of windows which are occluded by other win-
dows. Figure 3.5 shows the result of the whole region of interest search.

(a) top camera (b) bottom camera

Figure 3.5: Resulting regions of interest.
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Algorithm 3 Position correction and merging
1: result = []
2: occluded = []
3: for window in selectedWindows do
4: if result.empty() then
5: result.append(window)
6: occluded_from = (window.center.x-window.size.x)
7: occluded_to = (window.center.x+window.center+x)
8: occluded[occluded_from:occluded_to]=true
9: continue

10: end if
11: merged = false
12: for other in result do
13: centerDistance = (window.center-other.center).norm()
14: maxSize = max(window.size.norm(),other.size.norm())
15: overlap = centerDistance / maxSize
16: if overlap < overlapThreshold then
17: other.center = other.center * other.seeds
18: other.center += candidate.center * candidate.seeds
19: other.center /= other.seeds + candidate.seeds
20: other.size = other.size * other.seeds
21: other.size += candidate.size * candidate.seeds
22: other.size /= other.seeds + candidate.seeds
23: occluded_from=other.center.x-other.size.x
24: occluded_to=other.center.x+other.size.x
25: occluded[occluded_from:occluded_to] = true
26: end if
27: end for
28: if !merged && !occluded[window.center.x] then
29: result.append(window)
30: occluded_from = (window.center.x-window.size.x)
31: occluded_to = (window.center.x+window.center+x)
32: occluded[occluded_from:occluded_to]=true
33: end if
34: end for
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3.4 Setup of Train and Test Data

The data used for training and evaluation of the classifier was collected during various
events:

• RODEO 2018 (Dortmund, Germany)
• Iran Open 2018 (Teheran, Iran)
• German Open 2018 (Magdeburg, Germany)
• Various Test Games (HULKs Laboratories)

The collected data contained 20939 images which were labeled as ‘game’ meaning that
the scene on those images may appear within a real game. Within those images 25467
robots and 5888 balls were annotated. The candidate generation detected 14253 robots
and 2637 balls, resulting in a detection rate of 56% for robots and 44.8% for balls.
Beside the candidates laying on labeled objects the region of interest search produced
13029 candidates containing no objects.

During training, every candidate gets augmented multiple times with different options.
First, the window will be moved by 2 pixels in each direction, producing 9 different
samples. Afterwards, the candidate is as is and mirrored along the y-axis, producing 2
different samples for each moved window. With this approach, each candidate produces
up to 18 different samples. To balance the training set, the augmentation factor for each
class is multiplied by the amount of candidates of this class relative to largest amount
of candidates.



Chapter 4

Model Training and Optimization

Using the data generated and labeled using the region of interest search and the label
data from annotate, networks can be trained and optimized.

4.1 General Structure of CNNs

The uniform structure used for all evaluated individuals is given in figure 4.1. The
input is a YCbCr candidate image of arbitrary size. It is resized to a fixed size using
nearest neighbor interpolation. Then, multiple convolutional layers are applied. Finally,
multiple fully connected layers are applied. The output is a vector representing the class
scores.

YCbCr
Image

Resize

Convolution Layer 1

2DCL Act Pool LRN

...

Output
Vector

Fully Connected Layer

Input
Layer

Output
Layer

Hidden
Layer

Convolution Layer 2

2DCL Act Pool LRN

Figure 4.1: The general structure of a CNN used in the experiments. First, the image is
resized to a fixed size. Then, for each convolutional layer a two dimensional convolution
mask is applied (2DCL) followed by an activation (Act) and pooling (Pool) layer. After
each convolution, a local response normalization is applied. Finaly, the output of the
last convolutional layer is fed into a fully connected network which outputs the final
output vector.

27
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Each individual specifies the remaining hyperparameters within this structure. These
are the input size, number of convolutional and fully connected layers as well as their
internal configuration. Each convolutional layer is parameterized by a mask size, pool-
ing type and activation function. Likewise, the parameters of a fully connected layer
consist of the size and activation function. The parameters of this structure yields the
search space for the optimization step.

4.2 Search Space

The configuration of a single CNN based on section 4.1 gives the set of hyperparameters
to be optimized. The input image is resized within the range [8,24] ∈ N for x and y
direction. The amount of convolutional layers is limited to four. For each layer, there
are five layers at maximum with sizes within [1,4] ∈N in both dimensions. The pooling
functions was selected from no pooling, Max-pooling or Avg-pooling. The activation
function was either TANH or ReLU, same holds for the fully connected part. There
were four hidden layers at maximum in the fully connected part, each with a number of
neurons within [2,20] ∈ N.

4.3 Fitness Function

The fitness function derived from [8] consists of two major parts. The approximation of
the inference complexity of a network and the classification performance of a network.

4.3.1 Classification Performance

The classification performance metric described in [8, p. 23] cannot directly be applied
to multi-class decision problems. For each network, a k-fold cross validation will be
executed, yielding k values for each class c of TNRnck,TPRnck of that network n. In
order to approximate a lower bound of the metrics for each class, the difference of the
mean and the variance is calculated. To reduce the metrics over the classes, the mean of
the result for every class is calculated except for the rejection class. Latter one is omitted
as it is linear dependent to the other values. The TPRn of a network n is computed by:

TPRn = meanci∈C\creject(meanki∈[1,k](TPRnciki)−varki∈[1,k](TPRnciki)) (4.1)

, where mean is the arithmetic mean and var is the variance of their arguments.
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The TNRn of a network is calculated analog to the TPRn:

TNRn = meanci∈C\creject(meanki∈[1,k](TNRnciki)−varki∈[1,k](TNRnciki)) (4.2)

4.3.2 Inference Complexity

The complexity of a network is asymptotically approximated and linearly scaled. The
complexity ccni of a convolutional layer i of network n is approximated by

ccni = Ix · Iy · Ic ·mx ·my ·mc (4.3)

where Ix, Iy, Ic corresponds to the layer input size and depth, mx,my,mc to the amount and
size of the convolution masks in this layer. The complexity cfn of the fully connected
part of network n is approximated by

cfn =
k

∑
i=1

si · si−1 (4.4)

where k is the number of hidden layers and si the size of layer i. s0 is the input vector
size.

The complexity of a network topology with k convolutional layers is then

cn =
k

∑
i=1

ccni + cfn (4.5)

For the overall fitness the networks complexity is normalized by the complexity value
of the largest possible network n̂ within the search space:

c∗n =
cn

cn̂
(4.6)

4.3.3 Resulting Fitness Function

Given the approximation of the classification performance and the inference complexity,
the resulting fitness function is chosen similar to [8, p. 24] as follows.

fn = 0.7 ·TNR2
n +0.25 ·TPR2

n +0.05 · c∗n (4.7)
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As described in section 1.5, the true negative rate is more important than the true positive
rate, this component has a way higher weight. As the search space is already limited
to topologies which are feasible to inference on the NAO, the inference complexity got
a very low weight within the fittness function, in order to prefer smaller networks with
similar classification performance.



Chapter 5

Evaluation of Optimization
Approaches

This chapter describes evaluation results of approaches for the hyperparameter opti-
mization problem described in chapter 4. First, a Monte Carlo tree search based ap-
proach is evaluated in section 5.1. Afterwards an existing genetic approach [12] is
evaluated on the new problem and described in section 5.2 The genetic approach is
then extended by an elitism variant, as stated in [12, p. 12]. Finally, the results of those
approaches are be compared in section 5.3.

To meet the requirements described in section 1.5, the classifier should have a true
negative rate above 97.5% with a true positive rate of at least 80% for the ball class. For
the robot class, it should achieve a true negative rate above 90% with a true positive rate
of at least 80%.

5.1 MCTS Optimization

This section illustrates the application of an MCTS optimization to the framework de-
scribed in chapter 4 to search of the hyperparameters of a model. Training and Eval-
uation of the networks generated by the MCTS is done with the data collected in sec-
tion 3.4.

5.1.1 Setup

In order to optimize the search space of network topologies with MCTS, the structural
setup needs to be formulated as board-filling game. The optimized search space is

31
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arranged in a ordered key-value map, as section 5.1.1 shows. First, the input image is
sampled within the range [8,24]× [8,24]. The amount of convolutional layers is limited
to three. For each layer, there have been five layers at maximum with sizes within
[1,4] ∈ N in both dimensions. The pooling functions was selected from no pooling,
max-pooling or avg-pooling. The activation function was either no activation, TANH
or ReLU, latter two for the fully connected part. There were four hidden layers at
maximum in the ANN, each with a number of neurons within [2,20] ∈ N.

search_space = {
"00_sample_size_x": (8,24),
"00_sample_size_y": (8,24),
"10_convolution": [

{
"00_size_x": (1,4),
"10_size_y": (1,4),
"20_out_channels": (1,5),
"30_pooling": (0,2), # None, Avg, Max
"40_activation": (0,2) # None, ReLU, TANH
},

]*3,
"20_fully_connected": {

"00_layer": [{"size": (2,20)}]*4,
"10_activation": (1,2) # ReLU, TANH

}
}

Based on this configuration, the order of the nodes in the game tree is defined. A game
starts with choosing the sample size in x direction, then in y direction. Afterwards the
algorithm may add up to four convolutional layers. For each layer, it needs to choose
the number and size of the masks, as well as the pooling and activation function. Then
it can add up to 4 hidden layers with a certain size to the fully connected part. After
choosing the activation function for the fully connected part, the game is finished.

5.1.2 Results

Figure 5.1 shows the fitness function results of the best network after each iteration.
There were 1500 iterations executed, the best network was found in iteration 524. The
performance of the algorithm shows a logarithmic behavior over time.
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Figure 5.1: Fitness results of the best network after each iteration. Result of the fitness
function is plotted as ‘fitness’ equation (4.7). ‘tnr’, ‘tpr’ refer to the classification per-
formance parts TNR2 and TPR2. The model complexity part is shown by ‘complexity’

The detailed progress of the MCTS optimization is listed in table 5.1. The algorithm
first tended to use simple structures with no convolutional layers and only small fully
connected layers. Then, the chosen model became very complex until iteration 341.
Still, the most successful network found by this approach showed to be not at the upper
bound of the search space. It used a medium sample size, only a single one dimensional
convolutional layer and one fully connected layer.

Table 5.1: Top 5 Results of the MCTS optimization. Column ’Iteration’ refers to the
iteration when the network was found. The result of the fitness function is listen in Col-
umn ’Score’. ’Sample Size’ shows the chosen input size of the network in (x,y). Mask
size and amount, Pooling type and Activation Function is shown in Column ’Convolu-
tion’ Last Column ’Fully Connected’ shows the hidden layer sizes as well as the chosen
activation function of the fully connected layers. Empty square brackets indicate that
there were no hidden layers.

Iteration Score Sample Size Convolution Fully Connected

524 0.7141 (17,16) (4,1), 5, None, ReLU [19], ReLU
341 0.7067 (22,21) (3,3), 4, Avg, ReLU [], TANH

(3,2), 5, Max, TANH
200 0.6931 (23,16) (3,3), 5, Avg, ReLU [14], TANH

(2,4), 5, Max, TANH
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Iteration Score Sample Size Convolution Fully Connected

98 0.6899 (14,23) (1,2), 4, Max, TANH [8], TANH
72 0.6703 (12,18) [13], ReLU

The best network found by the algorithm reached a true negative rate of about 0.8 for
the robot and 0.93 for the ball class. Table 5.2 lists the detailed results of this network.

Table 5.2: Detailed results of the best network found by the MCTS optimization.

metric cv robot ball reject

tnr 1 0.77915 0.93768 0.88630
2 0.80196 0.94378 0.89738
3 0.83544 0.93439 0.85841

tpr 1 0.74748 0.74375 0.71504
2 0.77183 0.76195 0.75248
3 0.70474 0.77072 0.78102

The optimization using MCTS with UCT tree policy was not able to achieve the desired
classification results. It slightly missed the requirements of the ball detection with a
TNR ≈ 93.9% and TPR ≈ 75.9%. For the robot class, it had even a larger difference
to the requirements with a TNR ≈ 80.55% and a TPR ≈ 74.13%. Still, the results are
way better than guessing and there could be a model which solves the problem within
the desired error boundaries.

5.2 Genetic Optimization

Previous work on single class problems showed promising results on genetic approaches
[12]. In order to compare the novel MCTS approach to current work, the genetic ap-
proach will be applied to the new problem described in chapter 4. Results are described
in section 5.2.2.

As stated in [12, p. 12], the genetic algorithm could be enhanced using a elitism. There-
fore, beside the application of the vanilla version an evaluation of the extended approach
is done in section 5.2.3.
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5.2.1 Setup

As with the MCTS approach, data, general network structure, search space and fitness
function described in chapter 4 are used for the experiments. The parameters for the
genetic algorithm are chosen empirical by the conditions mentioned. 30 generations
with 50 networks in each generation are evaluated. The worst 10% in each generation
are excluded from reproduction. The mutation probability was set to 1

22 according to
the maximum number of degrees of freedom of the given search space.

5.2.2 Results without Elitism

This sections shows the results of the vanilla version of the genetic algorithm described
in [12] used with the settings described in section 5.2.1. The best network was found in
generation 9 with a fitness of 0.7429.

Figure 5.2: Fitness results of the best network after each generation. Result of the fit-
ness function is plotted as ‘fitness’ equation (4.7). ‘tnr’, ‘tpr’ refer to the classification
performance parts TNR2 and TPR2. The model complexity part is shown by ‘complex-
ity’

The algorithm showed high improvements in the early generations, the first generation
yielded a network with a fitness of 0.6907 which was increased to one with a fitness of
0.7429 in generation 9. However, in the 10th generation a very simple model dominated
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the reproduction, pushing the evolution towards a solution with a lower classification
performance. Due to the lack of elitism, the algorithm was not able to keep further track
of the solution from generation 9 and did not achieve such a fitness again. Figure 5.2
illustrates the fitness of the best networks after each generation.

Table 5.3: Top 5 Results of the genetic optimization. Column ’Gen’ refers to the gener-
ation when the network was found. The result of the fitness function is listen in Column
’Score’. ’Sample Size’ shows the chosen input size of the network in (x,y). Mask size
and amount, Pooling type and Activation Function is shown in Column ’Convolution’
Last Column ’Fully Connected’ shows the hidden layer sizes as well as the chosen acti-
vation function of the fully connected layers. Empty square brackets indicate that there
were no hidden layers.

Gen Score Sample Size Convolution Fully Connected

9 0.7429 (12,23) (1,4), 5, ReLU, None [] TANH
(3,2), 5, ReLU, Max
(1,3), 5, ReLU, None

10 0.7414 (19,12) (3,2), 5, ReLU, None [] ReLU
(3,2), 5, TANH, Max
(2,3), 5, ReLU, None

8 0.7310 (21,19) (1,2), 5, ReLU, None [] TANH
(3,2), 5, TANH, Max
(1,3), 5, ReLU, None

16 0.7274 (19,19) (2,1), 5, TANH, Max [19,10,18] ReLU
29 0.7210 (16,14) (2,1), 5, TANH, Max [17, 10, 18], ReLU

The detailed results of the top five networks of the genetic optimization is listed in
table 5.3. Networks with three convolutional layers dominated in the most generations.
Those networks had none or only one small fully connected layer. This may be due to
the reduction of the image sizes by the convolution padding and pooling steps. After
the performance drop in the 11th generation the network got stuck at a local maximum
of networks with a single convolutional layer and three hidden layers.

Table 5.4: Detailed results of the best network of the genetic approach.

metric cv robot ball reject

tnr 1 0.8115 0.9584 0.8709
2 0.8220 0.9524 0.8956
3 0.8325 0.9540 0.8735

tpr 1 0.7555 0.7641 0.7623
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metric cv robot ball reject

2 0.7884 0.8063 0.7455
3 0.7650 0.8019 0.7532

Table 5.4 lists the detailed results of this network. The optimization using the genetic
algorithm was still not able to achieve the desired classification results. Although it was
closer than the MCTS approach it missed the requirements of the ball detection with a
TNR≈ 95.5% and TPR≈ 79.1%. For the robot class, it had even a larger difference to
the requirements with a TNR≈ 82.2% and a TPR≈ 76.9%.

5.2.3 Results with Elitism

The vanilla approach evaluated in section 5.2.2 shows a lack in remembering good de-
cisions of previous generations. This problem can be faced by extending the algorithm
with an elitist selection. The results of the genetic algorithm using elitist selection is de-
scribed in this section. Additionally to the setup chosen in section 5.2.2, the best three
organisms are carried over from the current to the next generation, unaltered. The fitness
results of those organisms still may have small differences due to the random factors in
the training face, e.g. weight initialization or the order of the examples trained.
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Figure 5.3: Fitness results of the best network after each generation. Result of the fit-
ness function is plottet as ‘fitness’ equation (4.7). ‘tnr’, ‘tpr’ refer to the classification
performance parts TNR2 and TPR2. The model complexity part is shown by ‘complex-
ity’

The winner of the first generation already showed a quite high performance with a fitness
of 0.6969. While the classification performance was continuously growing, the models
became more complex over time. The elitism approach redressed the problem of forget-
ting good solutions. In generation 14 a quite complex model dominated even though the
fitness was slightly lower due to the higher inference complexity. Two generations later
the simpler model took the lead again as figure 5.3 illustrates. Without elitism, a similar
effect happened in generation 15 to 18. The vanilla approach was not able to recover as
it forgot the more complex model in generation 16. Using elitist selection, the complex
model remained in the population and took over several times yielding the best results.
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Table 5.5: Top 5 Results of the genetic optimization with elitism. Column ’Gen’ refers
to the generation when the network was found. The result of the fitness function is
listen in Column ’Score’. ’Sample Size’ shows the chosen input size of the network in
(x,y). Mask size and amount, Pooling type and Activation Function is shown in Column
’Convolution’ Last Column ’Fully Connected’ shows the hidden layer sizes as well as
the chosen activation function of the fully connected layers. Empty square brackets
indicate that there were no hidden layers.

Gen Score Sample Size Convolution Fully Connected

27 0.7541 (22,13) (4,2), 5, ReLU, None [19] TANH
(4,3), 5, ReLU, Max

25 0.7533 (15,17) (4,2), 5, ReLU, None [19], TANH
(4,3), 5, TANH, Max

16 0.7523 (19,16) (4,1), 4, ReLU, None [14], TANH
(3,3), 5, ReLU, Max

26 0.7509 (22,17) (4,3), 5, ReLU, None [19], TANH
(4,3), 5, ReLU, Max

28 0.7509 (22,13) (4,3), 5, ReLU, None [14] TANH
(4,2), 5, ReLU, Max

The detailed results of the top five networks of the extended genetic optimization is
listed in table 5.5. Networks with two convolutional layers dominated all top five gen-
erations. Those networks had one fully connected layer with mostly 19 neurons.

Table 5.6: Detailed results of the best network of the genetic approach using elitsm.

metric cv robot ball reject

tnr 1 0.8160 0.9442 0.9157
2 0.8527 0.9625 0.8858
3 0.8660 0.9423 0.8729

tpr 1 0.7999 0.8460 0.7060
2 0.7840 0.8229 0.7952
3 0.7431 0.8334 0.7862

Table 5.6 lists the detailed results of the best network found. The results for the ball
class are very similar to the ones without elitism. For the robot class, the achieved per-
formance was much closer to the desired classification results. Although the extended
genetic approach outperformed the vanilla one, it missed the requirements of the ball
detection with a TNR ≈ 95% and TPR ≈ 83.4%. For the robot class, the difference to
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the requirements were much higher with a TNR≈ 84.5% and a TPR≈ 77.6%.

5.3 Evaluation

The results of the MCTS based optimization from section 5.1 are compared with those
of the Genetic Algorithm described in section 5.2. The vanilla version of the genetic
algorithm already outperformed the MCTS approach using UCT. The extension of the
genetic approach by elitism outperformed the both others.

Figure 5.4 illustrates the performance difference of the algorithms. The result of the
MCTS is increasing monotonic and shows a logarithmic behavior. The first generation
of the genetic algorithm seemed to converge against a well solution but got stuck on
a less fitted local minimum in the later generations. This problem could be faced by
adding elitist selection, resulting in the best solution of all three algorithms.

The MCTS already outputs the first result after the first iteration. The genetic algo-
rithm has to compute a whole generation before it outputs the first result. After the fifth
generation the vanilla GA superseded the result of the MCTS with a fitness of 0.7153
compared to 0.7141. It was able to extend its advantage to 0.7429 until the 9th genera-
tion, then suffering the problems mentioned. The extended version of the GA was able
to find an even better solution in the 27th generation with a fitness of 0.7541.
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Figure 5.4: Compared results of the MCTS and Genetic Optimization over the number
of trained networks. The genetic algorithm (orange plot) outputs a result after each
generation, each generation contains 50 networks. The MCTS algorithm (blue plot)
yields the current best result after each model training.

In the overall result, the genetic algorithm was able to find a solution much closer to the
desired requirements described in the previous section. This result could be improved
by the extended genetic algorithm. The best network found reached a TNR ≈ 95.5%
with a TPR≈ 79.1% for the ball class and a TNR≈ 82.2% with a TPR≈ 76.9% for the
robot class.

A drawback of the MCTS using UCT as tree policy is that it is not able to take ex-
perience of neighbouring branches within the discovered game tree into account when
applying the tree policy. The genetic algorithm implicitly makes use of the experience
of all decisions. By changing the MCTS tree policy, e.g. with an SMBO approach, this
problem may be resolvable.



Chapter 6

Inference on the NAO

To inference a trained network on the NAO during a game, the network needs to be
transferred into the HULKs framework. Therefore serialization of the trained weights
and bias variables is needed. Afterwards the HULKs framework is extended by a dese-
rialization capability and a graph inference framework.

After training, the TensorFlow variables can be evaluated to numpy arrays. Those arrays
are serialized to JSON.

The graph inference framework is implemented in a object-orientated way. It makes use
of the Eigen/unsupported/Tensor framework of the eigen library [41]. The graph
class takes the path to a JSON file as constructor argument and holds the deserialized
JSON object at runtime. When graph is subclassed in order to implement a specific
graph, the weights within the JSON object need to be converged to Eigen::Tensor.
To convert those weights, a Weight class is introduced, which takes its dimensions as
template parameter as well as a deserialized JSON object containing the weight variable
and the variable name as constructor argument. During construction, a weight object
automatically converts a JSON list into an Eigen::TensorFixedSize according to
the given dimensions. A graph implementation may then hold all its weights as member
objects. The required graph operations are implemented similar to the eigen backend of
TensorFlow [42].

42
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Figure 6.1: Inference runtime of 1000 cycles on the NAO. The black signal corresponds
to the complete cycle time of the object detection module in seconds, including the
region of interest search. The inference runtime in seconds is plotted in blue. During
the measurement, two candidates where within the image.

Figure 6.1 illustrates the runtime of the inference framework. During the measurement,
two candidates where within the image. The major part of the modules runtime is taken
by the CNN inference, as expected. The classification of a single candidate takes about
7.5ms.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

The aim of this thesis was to develop a multi-class object detector to perceive balls and
robots at the same time on the NAO robotic system. While implementing a framework
for collecting and labeling data, training an optimized CNN for classification, compar-
ing the optimization approaches of MCTS and GAs with and without elitism. Finally, a
framework to inference the resulting network on the NAO was developed and evaluated.

The framework for collection and labeling data was built in a way that it can be reused
for object detection in general. The collected data contains the whole camera image
alongside with the metadata such as the joint angles and sensor data. The objects were
annotated directly on the saved images using bounding boxes. Based on this data a
region of interest search was introduced producing candidates alongside with ground
truth labels that can be used to train a CNN classifier.

To find an optimal classifier, multiple optimization approaches where evaluated, namely
MCTS, GA and GA with elitism. While the UCT based MCTS approach was able to
find better networks than the random chosen ones in the beginning, the results were not
able to met our requirements. The approach was already outperformed by the genetic
approach of our previous work [12] but was not able to keep good solutions therefore
did not converge against the best solution. The extension of the genetic approach using
elitist selection successfully redressed this problem and produced even a better result
than the vanilla one.

The resulting classifier has a slightly lower classification performance on the ball class
as the current one [8, p. 35]. Additionally to the one-class problem, it is able to detect
robots with a classification performance of TNR ≈ 84.5% and TPR ≈ 77.6%. The
overall detection rate including the candidate generation reached 37.4% for balls and

44
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43.4% for robots. Inference performance of the resulting classifier on the NAO fulfilled
our real-time requirements with approximately 7.5ms per candidate.

7.2 Outlook

A problem with MCTS using UCT is that decisions of neighbouring branches in the
evaluated tree cannot be taken into account. In future work, this problem could be
overcome using different tree policies like SMBO with LSTM based tree policies.

Given a object detection framework, the labeling tool could be extended. Images which
are to be labeled could be evaluated by the framework first, yielding label proposals.
The users of the labeling tool would then only have to recheck and correct these.

The recently released version of the NAO robot [43] has more computation power with
a quad core CPU with integrated GPU. A promising approach for future object detection
could be models like faster rCNN [44] which would make a heuristic based region of
interest search obsolete.
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Appendix A

Detailed Experiment Results

A.1 Detailed Results of MCTS

Table A.1: Top 5 Results of the genetic optimization with elitism. Column ’Iteration’
refers to the iteration when the network was found. The result of the fitness function
is listen in Column ’Score’. Columns ’TNR’, ’TPR’ and ’Complexity’ show the parts
TNR, TPR and cn of equation (4.7).

Iteration Score TNR TPR Complexity

1 0.4156 0.4525 0.2602 0.8229
2 0.6056 0.6727 0.3471 0.9790
14 0.6453 0.6907 0.4657 0.9530
16 0.6666 0.7199 0.4642 0.9656
70 0.6673 0.7577 0.4516 0.6932
72 0.6703 0.7180 0.4799 0.9772
98 0.6899 0.7281 0.5314 0.9741
200 0.6932 0.7419 0.5563 0.8343
341 0.7067 0.7609 0.5546 0.8418
524 0.7142 0.7600 0.5620 0.9126
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A.2 Detailed Results of Genetic Algorithm

Table A.2: Top 5 Results of the genetic optimization with elitism. Column ’Gen’ refers
to the generation when the network was found. The result of the fitness function is listen
in Column ’Score’. Columns ’TNR’, ’TPR’ and ’Complexity’ show the parts TNR, TPR
and cn of equation (4.7).

Gen Score TNR TPR Complexity

1 0.6908 0.7229 0.5511 0.9693
2 0.6985 0.7327 0.5570 0.9634
3 0.6770 0.7140 0.5269 0.9531
4 0.6988 0.7373 0.5510 0.9476
5 0.7153 0.7519 0.5936 0.9010
6 0.7201 0.7601 0.5745 0.9423
7 0.7127 0.7511 0.5702 0.9423
8 0.7310 0.8062 0.5257 0.8402
9 0.7429 0.7894 0.6084 0.8749
10 0.7414 0.7929 0.5920 0.8761
11 0.7199 0.7751 0.5488 0.8952
12 0.7133 0.7549 0.5706 0.9188
13 0.7218 0.7663 0.5727 0.9188
14 0.7214 0.7672 0.5686 0.9188
15 0.7201 0.7641 0.5753 0.9101
16 0.7274 0.7602 0.5995 0.9534
17 0.7252 0.7651 0.5878 0.9244
18 0.7218 0.7651 0.5878 0.9244
19 0.7214 0.7651 0.5878 0.9244
20 0.7133 0.7651 0.5878 0.9244
21 0.7201 0.7651 0.5878 0.9244
22 0.7274 0.7651 0.5878 0.9244
23 0.7274 0.7651 0.5878 0.9244
24 0.7201 0.7651 0.5878 0.9244
25 0.7218 0.7651 0.5878 0.9244
26 0.7123 0.7651 0.5878 0.9244
27 0.7133 0.7651 0.5878 0.9244
28 0.7135 0.7651 0.5878 0.9244
29 0.7210 0.7651 0.5878 0.9244
30 0.7210 0.7651 0.5878 0.9244
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Table A.3: Top 5 Results of the genetic optimization with elitism. Column ’Gen’ refers
to the generation when the network was found. The result of the fitness function is listen
in Column ’Score’. Columns ’TNR’, ’TPR’ and ’Complexity’ show the parts TNR, TPR
and cn of equation (4.7).

Gen Score TNR TPR Complexity

1 0.6970 0.7540 0.5159 0.8969
2 0.6995 0.7432 0.5602 0.8857
3 0.7099 0.7418 0.5753 0.9678
4 0.7084 0.7549 0.5490 0.9243
5 0.7208 0.7758 0.5586 0.8725
6 0.7238 0.7614 0.6206 0.8449
7 0.7229 0.7727 0.5849 0.8458
8 0.7148 0.7611 0.6120 0.7617
9 0.7257 0.7770 0.6011 0.7938
10 0.7314 0.7828 0.6078 0.7938
11 0.7426 0.7904 0.6341 0.7849
12 0.7409 0.7897 0.6301 0.7826
13 0.7398 0.7867 0.6243 0.8131
14 0.7356 0.7969 0.6241 0.6598
15 0.7430 0.7998 0.6424 0.6710
16 0.7523 0.8063 0.6035 0.8600
17 0.7454 0.8039 0.5908 0.8360
18 0.7495 0.8175 0.6248 0.6495
19 0.7471 0.7990 0.6243 0.7966
20 0.7476 0.8047 0.6103 0.7958
21 0.7472 0.7957 0.6391 0.7800
22 0.7488 0.7906 0.6254 0.8839
23 0.7472 0.7980 0.6017 0.8748
24 0.7481 0.8031 0.6453 0.7021
25 0.7533 0.8021 0.6411 0.7942
26 0.7509 0.8178 0.6334 0.6342
27 0.7541 0.8047 0.6474 0.7605
28 0.7509 0.8191 0.5913 0.7701
29 0.7502 0.8085 0.6386 0.7021
30 0.7450 0.7929 0.6251 0.8206
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