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2. M.Sc. Patrick Göttsch March 2, 2017





Bachelor thesis B — 1 — 2015
for Mr. Felix Wege Student ID: 20712345 Study Course: ETBC

Title:
Development and Implementation of a Dynamic Kick for the NAO Robotic
System

Project Description:
Currently the NAO robot of the TUHH’s RoboCup team is restricted to performing a
shot that is a frame based motion, designed by hand and executed by loading a series of
joint angles from a file. This is undesirable because there has to be a separate file for
each different kick and the motion cannot be adapted to changes, for example in target
direction and velocity. The aim of this bachelor thesis is to incorporate a system that
is able to perform a kick generated from a movement primitive (MP), comparing two
framework approaches, similar to [1] and [2]. Generalised MPs allow the NAO to adapt
to changes of either the position of the ball or other robots on the pitch while executing
a kick. A challenge lies in ensuring the stability [3] and [4] of the NAO when standing on
one foot during the kick.

Tasks:

1. Literature survey on utilisation of MP in kick motions

2. Design and simulation of control circuit for stabilization

3. Design and simulation of the 2 framework approaches for kick motions

4. Implementation on a NAO

5. Evaluation with current implementation



References:

[1] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and Generalization of Motor Skills
by Learning from Demonstration,” in IEEE International Conference on Robotics and Automation.
IEEE, 2009.

[2] S. M. Khansari-Zadeh and A. Billard, “Learning Control Lyapunov Function to Ensure Stability
of Dynamical System-based Robot Reaching Motions,” Robotics and Autonomous Systems, vol. 62,
no. 6, pp. 752–765, 2014.

[3] F. O. Poppinga, “Design und Implementierung eines Regelungsverfahrens zur Stabilisierung eines
humanoiden Roboters bei verschiedenen Bewegungsabläufen aus Basis des NAO–Robotiksystems,”
TUHH, 2015.
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Abstract

In this thesis, a dynamic motion for kicking a ball is designed and implemented. The kick
is implemented and tested on the NAO robotic system, a humanoid robot that is used in
the RoboCup Standard Platform League. It is demonstrated that with the implemented
kick, the NAO is able to kick the ball to cover a desired distance and from different
ball positions. This is achieved by using Dynamic Movement Primitives to generate the
motion, which allow to generalize a learned motion by changing scaling parameters. By
applying gyroscope feedback to the ankle joints, the NAO can maintain balance during
the kick.
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1 Introduction

Humanoid robots—robots with a human–like shape—have long been a subject of science
fiction and imagination. Industrial robots are common nowadays, but the notion of hu-
manoid robots as our companion in everyday life remains not much more than wishful
thinking. However, continuous research in the field of humanoid robotics steadily ad-
vances the capability of these robots, either by improving their hardware or software.
This thesis focuses on the latter.

Besides developing humanoid robots that assist humans directly through completing given
tasks, there is much to be learned by conducting research on them. For example, humanoid
robots have provided new insights to biomechanics and neuroscience, [1]. Designing and
working with humanoid robots has helped to understand human motions, e.g. balanced
gait. This allowed for a further application: the development of better prostheses, [2].

As a measure to motivate research on humanoid robotics the Robot Soccer World Cup
(RoboCup) was initiated and the first RoboCup games were held in 1997. A team of
students of the TUHH competes in the Standard Platform League (SPL) of the RoboCup,
where teams from different universities have to use robots of the same model, a toddler–
sized humanoid robot by the name NAO. Thus, the SPL focuses on implementing Software
that achieves cognition of pitch, ball, goal and other competitors; Software that controls
the behaviour of individual NAOs and the whole team; and Software that realises motions
such as walking, standing up and kicking. This thesis endeavours to implement a successful
kicking motion.

Since the environment is often unpredictable, an important trait of any humanoid robot
is flexibility. Robots that can handle changing environments by adapting their motions
are desirable. Applied to kicking, there are different ways in which the environment can
change, e. g. a varying ball position. Thus, a robot that can adapt its kick dynamically
is superior to one that can not do so. Humanoid robots in fields of application outside of
RoboCup also require this kind of flexibility and adaptability. Previously, key frames (see
section 2.1) have been used by TUHH’s RoboCup team Hamburg Ultra Legendary Kickers
(HULKs) and they have proven to be successful at scoring goals, however, because of the
disadvantage in flexibility and generalizability that accompany this method, a dynamic
kick is to be implemented.

During a kick the NAO merely stands on one foot. Hence, not tipping over and main-
taining balance is a formidable task, especially since the RoboCup SPL uses artificial turf
in which the NAO Robotic System (NAO) sinks in a bit under its own weight, [3]. Also,
collisions with other robots are a frequent disturbance which further stress the balance.
To successfully execute a kick, a means to balance on one foot is to be implemented.

1.1 Chapter Outline

The implementation of a dynamic kick consists of two separate objectives: the actual kick
motion and maintaining balance while kicking. This is reflected in the structure of this
thesis.
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Section 2 presents and explains different methods to design motions used by teams com-
peting in the SPL or in humanoid robotics in general. The advantages and disadvantages
of each method are discussed with respect to desired traits of a dynamic kick. Mainly, the
concept of Dynamic Movement Primitives (DMPs)—a nonlinear system that generates a
trajectory—is elaborated.

In section 3 the concept of static and dynamic balance is explained. Different ways to
maintain a balanced pose are presented, among them a controller that uses the NAO’s
gyroscope to adjust ankle roll and pitch of the support foot.

Subsequently, section 4 presents the NAO that is used to implement and test the dynamic
kick. It showcases essential features of the existing HULKs’ software framework that are
required for the implementation, e. g. forwards and inverse kinematics.

Thereafter, section 5 explains how a DMP is learned from a demonstrated motion. The
learned kick motion is analyzed in MATLAB and then transferred to the NAO. In addi-
tion, the implementation of measures to maintain balance is described.

In section 6 the implemented kick is evaluated. Also, the balance during kicking is as-
sessed. This is done with respect to the requirements defined in section 1.2.

At last, section 7 provides a review on the performed tasks. A final conclusion is drawn.
Also, improvements to the implemented kick and future topics of research are pointed
towards.

Before the next section begins, requirements that define a dynamic kick are defined.

1.2 Requirements for a Dynamic Kick

For a kick to be considered dynamic, it has to meet certain requirements. They are defined
as follows:

1. Adapt to Changes in Ball Position
The kick should be able to kick any ball that is within the reachable space of his
feet without having to position precisely.

2. Kick in Different Directions
A dynamic kick should also be able to kick the ball in any direction desired without
reposition to save time.

3. Adjust Distance Covered by Ball
It is vital for a successful robot football game that the robots are able to pass. For
this, the distance covered by the ball needs to be controlled.

4. Maintain Balance while Kicking
If the robot tips over, the kick is likely to miss and therefore, this should be pre-
vented.

These requirements are used throughout this thesis to assess different approaches for
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kicking and balancing. They also serve as a basis for the evaluation of the implemented
kick.
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2 Kick Motions

In general, humanoid robots have a high number of Degrees of Freedom (DoFs). That is
why designing and generating motion patterns for them is a complex task. This chapter
introduces three means of modelling and designing motions for robots. It focuses on their
applicability to kicking motions and discusses their advantages and disadvantages.

Greatly important for kicking motions is the trajectory of the foot that strikes the ball.
This foot is the end effector of the kicking leg. It can be described by a set of joint angles
as well as in task space by a position and orientation, [4]. Both the description with joint
angles of position and orientation can be used to design motions. To design a motion by
specifying joint angles can be less intuitive than using Cartesian coordinates, but they
can be sent directly to the motors.

Approaches to design motions of robots can be distinguished into online and offline gen-
erated motions. Generating a motion offline means it is designed externally and prior
to its execution. Therefore, it is not limited by the computational power of the robot
and intuitive in its design process. However, it lacks adaptability because the robot will
not be able to adapt to changes of the environment without aborting and restarting the
execution to take new sensory data into account.

Conversely, online generation happens during the execution and can use incoming in-
formation to adjust the motion. This is especially advantageous in the RoboCup SPL
because a successful kick has to consider the constantly changing game state on the foot-
ball pitch as well as perturbations. Obviously, calculating the motion online is limited by
the robot’s computational power.

A compromise between online and offline generation can be made by using an offline gener-
ated motion that allows to be changed online, [5]. In the following sections, three different
approaches to model motions of humanoid robots with varying degrees of online generation
are explained and their suitability for a dynamic kick is discussed. The three approaches
are interpolating key frames (section 2.1), trajectories modelled by splines (section 2.2)
and Dynamic Movement Primitives (setion 2.3).

2.1 Interpolated Key–Frames

Key–frame based motion planning uses sets of joint angles for discrete points in time
and interpolates between them. This method has been and is being used by a number of
RoboCup SPL teams and humanoid robots in general, [6]. It is also commonly used in an-
imation and filmmaking. Figure 2.1 depicts an exemplary sequence of two key frames 2.1a
and 2.1c. Each frame describes the position of the limbs in terms of joint angles. To create
a smooth motion, frames between two different key frames are interpolated for each step
in time. Here, just one interpolated frame (2.1b) is shown.

Each individual key frame has to be set up manually, which is time–consuming. This
deficiency can be overcome by deriving the key frames from kinaesthetic teaching, meaning
a human teaches a robot a motion by physically guiding it. This still requires a separate
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(a) First key frame (b) Interpolated in–between frame (c) Second key frame

Figure 2.1: A sequence of two key frames with one interpolated in–between frame (http:
//www.real3dtutorials.com/images/img00073.jp, 20.12.2016)

set of joint angles for each different motion, which is undesirable for it is impossible to have
sets of key frames for each conceivable combination of ball and robot position as well as
target direction. In practice, only a finite number of different motions can be implemented
with key frames and for that reason the robot has to occupy a certain position relative to
the ball and the target before it executes a kick.

Since the motion is fixed, the robot is unable to cope with disturbances and might lose
its balance; stability is not guaranteed. Instead of specifying the motion by means of
joint angles, one can define the position of the robot’s limbs with Cartesian coordinates,
as proposed by Czarnetzki et al. [7]. Thence, the calculation of required joint angles
is underconstrained and additional constraints can be imposed. These constraint can
be used to include a feedback controller that establishes stability. The respective joint
angles can be calculated by inverse kinematics (see section 4.4). Furthermore, learning
algorithms can be applied to optimize the key frames, [5].

2.2 Modelling a Trajectory with Curves

Instead of describing the motion via pre–recorded key frames, the desired trajectory of the
end effector can be modelled. This could be achieved with a parametric curve or spline
that is a polynomial derived from a set of control points or knots. Two suitable kinds of
splines are presented here, but plenty of other ways to model a trajectory are conceivable.
Both of them consist of a linear combination of control points. Again, since this motion
is specified by Cartesian coordinates, inverse kinematics (see section 4.4) is necessary.

2.2.1 Bézier Curves

The Bézier curve for n+ 1 control points Pi, i ∈ [0, n], is defined as
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CBézier(t) =
n∑
i=0

Bi,n(t)Pi. (2.1)

Therein, Bi,n(t) is the i–th Bernstein polynomial, which by definition is

Bi,n(t) =

(
n

i

)
ti(1− t)n−i. (2.2)

A curve with n + 1 knots is of degree n. Complex motions can either be described by
a high order polynomial or a sequence of lower order polynomials. For the purpose of
computational speed polynomials of high order are impractical. Choosing a degree of
n = 3 is a reasonable choice since it still allows for smooth transitions, i. e. C1 continuity,
between two consecutive curves.

In general, all knots except the first and last one do not lie on the curve, but they affect
the shape of it. The tangent at the first knot is P1 − P0 and the tangent at the last
knot is Pn−Pn−1. Let P0, P1, P2, P3 and Q0, Q1, Q2, Q3 denote two sets of control points.
To create a composite Bézier curve the last knot of the first curve P3 has to coincide
with the first knot of the second curve Q0. This enforces continuity, but not continuous
differentiability, i.e. smoothness. The slope at the connection point P3 = Q0 is equal
if P3 − P2 = Q1 − Q0 holds; this is true when P2, P3 = Q0 and Q1 are collinear and
equidistant. This condition ensures smoothness, [8].

0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 2.2: The Bézier curve c(t) depicts the initial progression and the Bézier curve c∗(t)
depicts the adaptation to the new target position and direction.

When calculating the coefficients of a curve, all control points of this curve have to be
known. However, if multiple curves are sequenced, only the curve that is currently used
to perform a motion has to be known and the control points of future ones can be set
online. Thus, the trajectory can be tuned by changing the control points and dynamic
motions are possible. To satisfy the condition for smoothness the control points with
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index 0 and 1 have to meet certain conditions; they can not be set arbitrarily. The
remaining control points, however, can be set unconditionally. The last one determines
the final position while the penultimate determines the final direction of the trajectory.
Figure 2.2 illustrates this circumstance. To adapt the curve c(t) to a new final position,
the control point Q∗

3 is set accordingly. Then, Q∗
2 can be set to determine the direction

at the end of the trajectory. Connecting the resulting curve c∗(t) to the following curve
with continuous differentiability is possible for Q3 − Q2 = Q∗

3 − Q∗
2. With this, a kick

motion can be adapted dynamically to strike a ball at any reachable position in a desired
direction.

2.2.2 B–Splines

With Bézier curves a motion can be adapted dynamically to new positions and direc-
tions. However, other requirements, e. g. the strength of the kick, need to be met (see
section 1.2). To incorporate these, Wenk and Röfer presented a method that uses B–
splines, [6]. B–splines are a more general form of Bézier curves and they allow for more
control over the trajectory by the user. A B–spline of degree p is defined as follows, [9]:

CB(t) =
n∑
i=0

Ni,p(t)Pi. (2.3)

Here, the basis functions are recursively defined by

Ni,j(t) =
t− ti
ti+j − ti

Ni,j−1(t) +
ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t). (2.4)

and

Ni,0(t) =

{
1 if ti ≤ t < ti+1 and ti < ti+1

0 else
(2.5)

The degree of the curve is p = m− n− 1. In addition to the control points Pi, i ∈ [0, n],
there now are internal knots ti, i ∈ [0,m].

Wenk and Röfer [6] defined 6 control points to determine the shape of their kick trajectory.
With a degree of 3 there are m = p + n + 1 = 10 internal knots. They then formulated
conditions for durations of segments between control points. Also, since the foot should
not move at beginning and end of the kick, derivatives at this point should be zero. With
enough conditions, all internal knots can be determined and the curve can be calculated.
The resulting curve is continuously differentiable twice, which means there is no jerk. The
control points are set at the beginning of the motions; trajectory modelling is not required
beforehand.

Just as for the key frames, joint angles for the end effector to move along the desired
trajectory can be calculated via inverse kinematics. For both the Bézier curves and the
B–splines, all limbs that are not involved in the kicking motion can be used for balancing.
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Using either the Bézier curves or B–splines for motion planning allows for adapting to
changes in the environment but to do so, the motion has to be replanned. Furthermore, a
controller is necessary to execute the motion with the capability to cope with disturbances
and minimize the tracking error. While it is possible to use this approach for a dynamic
kicking motion, there exist more suitable approaches.

2.3 Dynamic Movement Primitives

A motion pattern such a kicking a ball is a Motor Primitive (MP) in the sense that a robot
accomplishes a given task with a sequence of motor commands, [4]. Such motions can be
generated by means of a dynamical system. The planning and execution are embedded
in the dynamical system; this means it generates a trajectory and follows it in the face
of disturbances. Such a system is useful to model goal–orientated behaviour; one that
has to fulfil a certain task, e.g. kick a ball. The time evolution for a given initial state
is determined by the dynamical system. An estimation of a dynamical system can be
created from single or multiple kinaesthetic demonstrations.

DMPs offer a way to achieve this. They are formalized in a second–order Ordinary
Differential Equation (ODE) which has a weak nonlinearity that can be learned from
kinaesthetic demonstration. DMPs allow online adaptation of the motion while ensuring
stability. A major advantage is the generalizability in space and time by changing param-
eters. There are two variants of DMPs, one for discrete and one for rhythmic motions. A
discrete motion has a point attractor whereas a rhythmic motion has a limit cycle attrac-
tor. Here, only the one that models discrete motions is explained since it is applicable to
kicking motions. In theory rhythmic DMPs could be used for gait motions.

2.3.1 Discrete Dynamic Movement Primitives

Discrete DMPs consist of the transformation system 2.3.1 and the canonical system 2.3.1.
Integrating the former generates a position whereas the latter acts as a clock. Learning a
motion is achieved through a learnable forcing term. In the following sections, x, y and z
do not correspond to spatial dimensions but instead represent the system state.

Transformation System

The system is described by the following equation 1:

τ ÿ = K (g − y)−Dτẏ + (g − y0)f. (2.6)

Commonly, this is rewritten into a system of two first–order ODEs:

τ ż = K(g − y)−Dz + (g − y0)f

τ ẏ = z.
(2.7)

1Alternatively, τ ÿ = αz(βz(g − y) − ẏ) + x(g − y0)f is an equally valid representation of the trans-
formation system and all following equations could be expressed with this notation, [10]. However, the
other representation is chosen because it can intuitively be interpreted as a mass–spring–damper system.

8



Here, y, z and ż denote the position, velocity and acceleration of the system respectively
and τ is a temporal scaling factor. Subsequently, the duration of the motion is normalized
and therefore also labelled by τ . The nonlinearity (or forcing term) f allows the system
to perform arbitrarily complex smooth movements while it converges towards the target
state g, also known as the attractor. This is due to the factor (g − y0) which enables
spatial scaling. Without the nonlinearity, the system is equal to the common mass–
spring–damper system.

Customarily, g is called goal position but the term goal is ambiguous when referring to
football so the final position shall be named target. K and D are positive constants that
can be used to tune the damping ration. A critically damped system is desired since
it returns to the attractor as fast possible and without oscillating. This is achieved for
D = 2

√
K, with D being a damping constant and K acting as a spring constant, [11].

Canonical System

To enable temporal scaling, an autonomous system—one that does not explicitly depend
on the independent variable—is necessary. Therefore, the canonical system with phase
variable x for discrete motions is introduced 2.

τ ẋ = −αxx (2.8)

This ODE’s closed–form solution is given as x(t) = exp(−αx tτ ). Evidently, αx is a decay
factor that defines how fast the exponential decay is. The phase variable x converges
monotonically to zero for any given initial value xo; often, the x0 is set to 1. Notably, the
canonical system for rhythmic motions is periodic.

Nonlinearity

The nonlinearity (or forcing term) f that defines the motions’ shape is defined as

f(x) =

∑N
i=0 ψi(x)wi∑N
i=0 ψi(x)

x, (2.9)

wherein ψi(x) are basis functions and wi are associated weights. They are learned from a
demonstrated motion and they determine the shape of the nonlinearity f , which in turn
determines the shape of the motion that is reproduced by the transformation system.
Utilizing the phase variable x instead of explicitly depending on the time t makes the
system autonomous. Furthermore, multiplying by x makes the forcing term vanish at the
end of the motion because it converges to zero.

The centers ci are chosen to be equidistantly spaced. Because we use x instead of t and x is
exponentially decaying, ci = exp

(
−α ti

τ

)
holds, where ti are N equidistantly spaced points

in time between 0 and τ . The N basis functions are almost unanimously implemented as

2The phase variable x as well as the state of the transformation system y and z are not to be associated
with physical dimensions of space.
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Gaussian functions in literature concerning DMPs, with σ2
i and ci determining the width

and center of the i–th basis function:

ψi(x) = exp

(
− 1

2σ2
i

(x− ci)2

)
. (2.10)

For a given demonstrated trajectory ydemo and its derivatives ẏdemo and ÿdemo the ap-
propriate nonlinearity flearn can be computed by solving equation 2.6 for f ; flearn then
approximates the necessary forcing term f so that y resembles the demonstrated trajec-
tory.

flearn = τ ÿdemo +Dẏdemo +K(ydemo − g) (2.11)

With flearn and ψi(x) known, the according weightings wi can be calculated by any re-
gression algorithm.

Generalizability and other properties

DMPs can straightforwardly be generalized in time and space by changing few parameters;
the system is spatially and temporally invariant. The temporal scalability is possible due
to τ . For 0 < τ < 1, the is executed more quickly that is was learned and for τ > 1 it
is slowed down. Spatial scaling is done by changing the initial position y0 or the final
position g. The shape of the trajectory stays the same (at least for the same weightings)
and since the forcing term vanishes for t → 0, the final position is always reached. The
motion can be scaled at the start or during runtime.

Besides the generalizability that is valuable for a dynamic kick DMPs possess other prop-
erties that are favourable. For example, the dynamics of the system automatically cope
with external perturbations due to the intrinsic attractor behaviour, [11]. Therefore, the
system is robust against perturbations. DMPs can easily be expanded to more than
one dimension by simply describing each one with its own transformation system that
share a canonical system for synchronisation purposes. With this, trajectories in a three–
dimensional space can be generated conveniently. Describing the motion in task space
has the advantage that spatial scaling for different ball positions is straightforward. The
required joint angles that move the end effector along the generated trajectory are calcu-
lated by inverse kinematics (see section 4.4).

Additionally, new motions can be learned with ease. The weightings wi can be learned
from a demonstration by anyone without special training. It is not required to explicitly
plan the motion. Furthermore, multiple DMPs can be joined together by sequencing
them, allowing robots to perform even more complicated tasks [12]. DMPs can also
summed together and weighted to create a mixture of motions, [4]. This, together with
the generalizability, makes DMPs suitable for a robot designed to assist humans in daily
routine.

2.3.2 Variations and Extensions for Dynamic Movement Primitives

Since their earliest proposal by Ijspeert et al. [13], DMPs have been applied in a variety
of ways because of all the reasons stated above. Ijspeert et al. themselves used them
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for drawing two–dimensional shapes and for tennis swings. Additionally, they have been
applied to grasping a bottle and pouring water out of it as well as pick–and–place mo-
tions, [10]. For a three–dimensional goal–oriented application such as a kick, the DMPs
framework is a feasible approach to generate a dynamic kick. However, the original frame-
work can be modified to better fit the task of kicking and overcome some deficiencies.

Third–Order Transformation System

When the target g is changed during execution a discontinuity in the acceleration occurs.
Huge steps in acceleration are undesirable because the motor might not be able to follow
motion. This deficiency can be overcome by filtering the target change. For this, the
target g is considered to be a continuous variable and the changed target is denoted by
g0. The transformation system then becomes

τ ż = K(g − y)−Dz + (g − y0)f

τ ẏ = z

τ ġ = αg(g0 − g).

(2.12)

Essentially, the transformation system becomes a third–order system, [10]. Any sud-
den change in target position is smoothed. This does not change the generalizability or
stability of DMPs.

Modified Transformation System

No motion will be generated if the initial and target position coincide; y0 = g. For
y0−g � 1 small changes in g lead to huge accelerations which could result in an infeasible
motion. Moreover, if the sign of the target is changed, the trajectory is mirrored, [14]. All
of these disadvantages can be prevented with subsequent alteration of the transformation
system3:

τ ż = K(g − y)−Dz −K(g − y0)x+Kf

τẏ = z.
(2.13)

This formulation generates motions for y0 = g due to the fact that f is not multiplied by
(g − y0); f is still multiplied by K to make spatial scaling possible. The K(g − y0) term
avoids discontinuities in acceleration at the beginning of motions because it cancels out
the initial K(g − y). For learning from demonstration equation 2.11 has to be adjusted
to fit this modified transformation system.

Moving Target

Using the formulation described in 2.7, the final velocity—that is, the velocity at the end
of the imitated motion—can only be scaled if the duration is changed. Controlling this

3Interestingly, this approach was motivated by neurophysiology of spinal force fields in frogs under
spinal cord stimulation.
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velocity is important for kicking motions since is corresponds to the strength of the kick
and therefore the distance the ball will cover. The transformation system can be altered
to make independent scaling of ẏ and τ possible.

Instead of using solely a target position gp, one can expand the transformation system by
additionally incorporating target velocity ġp and target acceleration g̈p, thus modelling
a moving target (as opposed to the aforementioned transformation systems with a fixed
target):

τ ż = K(gp − y) +D(τ ġp − z) + f + τ 2g̈p

τ ẏ = z.
(2.14)

There are certain conditions initial and final values have to fulfil. These are as follows:

gp(0) = y0, ġp(0) = ẏ0, g̈p(0) = ÿ0,

gp(τ) = y1, ġp(τ) = ẏ1, g̈p(τ) = ÿ1,
(2.15)

where y0, ẏ0 and ÿ0 denote the initial position, velocity and acceleration while y1, ẏ1

and ÿ1 denote the final position, velocity and acceleration of the demonstrated motion
respectively. The final acceleration should be zero, final position and velocity can be
controlled and the initial values are determined when the kick starts. Since there are
six conditions, the target can be described by a fifth–order polynomial and its first and
second derivative, [15]:

gp(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0

ġp(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t

g̈p(t) = 20a5t
3 + 12a4t

2 + 6a3t+ a2

(2.16)

The coefficients b0, ..., b5 can be calculated by solving the system of equations 2.15 with
the polynomials of 2.16. A MATLAB script that computes the symbolic solution can be
found in appendix A. The coefficients are

b0 = y0,

b1 = ẏ0,

b2 =
ÿ0

2
,

b3 = −20y0 − 20y1 + 12τ ẏ1 + 3τ 2ÿ0 − τ 2ÿ1

2τ 3
,

b4 =
30y0 − 30y1 + 16τ ẏ0 + 8τ ẏ1 + 3τ 2ÿ0 − τ 2ÿ1

2τ 4
,

b5 = −12y0 − 12y1 + 6τ ẏ0 + 6τ ẏ1 + τ 2ÿ0 − τ 2ÿ1

2τ 5
.

(2.17)

Since the coefficients b0, ..., b5 depend on the temporal scaling factor τ they have to be
calculated anew if τ is changed. Equation 2.11 has to be adjusted appropriately for
learning a motion with a polynomial target function. The parameter ġ controls the final
velocity. The learned forcing term has to calculated for the altered transformation system
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of 2.14. Because flearn now also depends on the target velocity ġ the trajectory’s shape
changes if ġ is changed. The forcing term amplitude A is introduced to correct this:

A =
ġ − ẏ0

ẏ1 − ẏ0

. (2.18)

With this, equation 2.14 can be modified to

τ ż = K(gp − y) +D(τ ġp − z) + Af + τ 2g̈p

τ ẏ = z
(2.19)

and thus, flearn is

flearn =
1

A

[
τ 2(ÿ − g̈d) +Dτ(ẏ − ġd) +K(y − gd)

]
. (2.20)

The amplitude A is calculated from the desired and original final velocity. With this the
duration, final position and velocity can be changed freely.
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3 Maintain Balance

Being a humanoid robot, the NAO has a relatively high Center of Mass (CoM) compared
to four–legged or wheeled robots. As a result walking or even standing upright with small
disturbance proves to be a difficult task. Kicking further stresses the postural stability
because the interaction with the ball and the resulting forces are unknown. Also, as the
NAO is performing a kick, only one foot’s sole has contact to the ground; it is called
the support foot, [16]. It is important that this foot remains stationary, not only for the
purpose of stability, but also because it is the reference coordinate system for kinematics.

At first, the axis for the NAO are defined. The x–axis is positive from back to front , the
y–axis is from right to left and the z–axis is from bottom to top (see figure 3.1). Rotations
about x–, y– and z–axis are called roll, pitch and yaw, respectively. Alternatively, they
are referred to as rotations in the coronal, saggital and transverse plane.

Whilst standing on one foot, the robot can rotate as a whole about the edge of the sup-
port foot. The rotation about the x– and y–axis act as two additional DoFs. Because
these DoFs are unpowered and can not be controlled, they are considered to be pas-
sive DoFs. To maintain balance and avoid tipping over, the foot should ideally remain
flat on the ground at all times. If only one edge touches the ground, the robot will ei-
ther fall over or swing back so that the whole sole has ground contact, depending on the
forces acting on the robot. Of course, no other limb of the robot should interfere with the
ground. To keep the body upright, only the sagittal and coronal plane are considered. It
is assumed that there is no rotation in the transversal plane because the friction keeps
the foot from rotating.

From observation of humans recovering from pushes, different balancing strategies were
found, [17]. For standing or walking it is possible to take a step to change the support
polygon and thereby maintain balance. For kicking however, this is not an option since the
robot has to remain stationary. Thus, the biped NAO can only be balanced by utilizing
internal joints. Since the kick motion only determines the joint angles of the kicking leg,
all other angles can be used to maintain balance.

There are numerous ways to maintain balance and some shall be discussed here. Most
of them consider the CoM’s position, velocity and/or acceleration and rely on sensory
feedback. The notion of static and dynamic balance is explained in the following sections.
Then, different controllers are proposed to maintain balance and cope with disturbances.

3.1 Static Balance

When a robot is not moving or only executing slow motions with small momentum, a
sufficient criterion for balance is that the projection of the CoM to the ground is within
the support polygon, where the support polygon is the convex hull of all parts that contact
the ground, [1]. What this means is that CoM projection should be inside the area that
is formed by enclosing all points that contact the ground. This is illustrated in figure 3.2.
For kicking motions, the support polygon is equal to the sole of the support foot.
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Figure 3.1: The axes as they are defined for the NAO (http://doc.aldebaran.com/
1-14/_images/torso_xyz_axis.png, 30.12.2016)

3.2 Dynamic Balance

Because the idea of static balance only applies if a robot is standing still or in minuscule
motion, it is most likely to be inapplicable to a kicking NAO because a fast kicking
motion will result in dynamic forces that can not be coped with this way. Suppose the
NAO is in a single–support phase—that is to say just one foot has ground contact—and
is moving an arbitrary way. Then, at the contact surface, the ground reaction can be
represented by three forces (Fx, Fy, Fz) and three moments (Mx, My, Mz) with the axis
definition as in figure 3.1. These result from the distributed loads at the sole. If there is
no sliding, the horizontal forces Fx and Fy compensate the vertical moment Mz due to
static friction, [16]. To assess the stability, the horizontal moments Mx and My are to be
examined. Horizontal moments can be compensated for by the point of application of the
vertical force Fz and since the vertical load is unidirectional (its sign is the same over the
entire surface), the point of application can only be in the support polygon. This point
of application (px, py) on the surface of the foot where the moments Mx and My are zero
is called the Zero–Moment Point (ZMP). It can be used to judge the stability of a robot.
If the ZMP exists within the support polygon, the robot can be in dynamic balance. A
ZMP outside the support polygon is a fictional ZMP, for the point of application of the
ground reaction force can not exist outside of the contact area.

The point of application of the ground reaction force also is the Center of Pressure (CoP).
If the robot is dynamically balanced, the ZMP and CoP coincide. This is illustrated in
figure 3.2. The CoP always lies within the support polygon, but the necessary force ap-
plication point of Fx in order to balance the robot can lie outside of the support polygon,
constituting a fictional ZMP. However, the force can not actually have its point of appli-
cation outside of the support polygon. In this case, the CoP ad the ZMP do not coincide
and dynamic balance is not ensured.

15

http://doc.aldebaran.com/1-14/_images/torso_xyz_axis.png
http://doc.aldebaran.com/1-14/_images/torso_xyz_axis.png


Figure 3.2: The left part depicts a
sparsely moving human whose CoM pro-
jection is inside the area formed by its
feet, coinciding with the ZMP. On the
right, the CoM lies outside the sup-
port polygon during a rapid motion, but
the ZMP lies within it.

Figure 3.3: A three–dimensional in-
verted pendulum. The CoM is restricted
to move in the xy–plane at a constant
height.

3.3 Linear Inverted Pendulum Model

A Linear Inverted Pendulum Model (LIPM) can be used to model a humanoid robot
standing in an upright pose. As a simplifying assumption, the robot’s entire mass is
assumed to be located in the CoM, which is at a constant height zc. The legs that form
the rod are assumed to be massless. The pendulum is assumed to have a rod of variable
length so that the CoM can have a height above the ground when its position in the
transverse plane changes. In addition, the pendulum is linked to the ground by a pivot
that allows roll and pitch. The LIPM is described by the following equation:

ẍ =
g

zc
x. (3.1)

The LIPM can be used to derive control policies that maintain balance.

3.3.1 Ankle Torque Control

For a two–dimensional LIPM with ankle torque τx the CoM dynamics can be described
by a slightly altered LIPM–equation:

ẍ =
g

zc
x+

1

mzc
τx. (3.2)

In equation 3.1, zc = const. is the CoM height, g is the gravitational acceleration and x
and ẍ are the CoM position and acceleration, respectively. A PD–controller for the ankle
torque proposed by Kajita et al. [1] is as follows:

τx = −Kpx−Kdẋ. (3.3)
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The feedback gains kp and kd can be tuned to achieve a desired frequency response. In-
tegral feedback can be incorporated to reduce the steady state error, [18]. The dynamic
behaviour is the same for y and ÿ instead of x and ẍ since the two coordinates are inde-
pendent. A three–dimensional LIPM is a superimposition of two two–dimensional LIPM,
one for the coronal plane and one for the sagittal plane. This allows for the dimensions
to be controlled independently. This ankle strategy for balancing can be applied only if
the torque of the motors can be set precisely. For the NAO the motors are controlled by
sending desired joint angles and stiffnesses (see section 4.1). The torque can not be set
directly and therefore, this approach is unsuited.

3.3.2 Gyroscope Feedback Control

As mentioned above, the NAO is assumed not to rotate in the transversal plane. To
register motion in the sagittal and coronal plane the NAO’s gyroscope proves to be useful.
The gyroscope that is part of the Inertial Measurement Unit (IMU) measures the angular
velocity ωrGyro and ωpGyro of the torso, where the superscript r and p stand for roll and pitch,
respectively. For most poses, the CoM can be assumed to be located in the torso since
its mass exceeds that of other limbs, therefore the measured angular velocity resembles
the CoM’s angular velocity. For the sagittal plane, ωrGyro is proportional to the torso’s
velocity ẋ. Analogously, ωpGyro is proportional to ẏ.

The angular velocity can be used for feedback control. To accomplish this, deviation from
a desired velocity is fed back to a joint that corrects this error. For example, if there
is a roll ωrGyro, the ankle roll joint could tilt the foot relative to the rest of the body to
compensate for this. Thus, the CoP can be shifted to that is lies in the support polygon.
Alternatively, the hip roll joint could be used for such motion and self–evidently the same
balancing approach can be applied to the coronal plane.

Ankle Controller

A balanced pose can be established if the body’s velocity is kept at zero. The measured
gyroscope data can act as the control error. A proportional controller is proposed to
balance the NAO by adjusting the ankle roll and pitch, [19]:

θrFoot = θr0,Foot + Kr
P ω

r
Gyro. (3.4)

The gyroscope reading ωrGyro is added to the ankle roll θr0,Foot that the ankle of the support
foot currently has. The actual joint angle then sent to the motor is θrFoot. The same is
done for the ankle pitch and the appropriate gyroscope reading. The constants Kr

P and
Kp
P are proportional gains Figure 3.4 shows the design of the left leg of the NAO with all

its joints. This design for a controller is justified by Hengst by solving the LIPM equation
which leads to a hyperbolic cosine in the state space (x, ẋ), [20]. The hyperbolic cosine is
then approximated by a straight line.

A P–controller only takes into account the currently measured gyroscope data. The
steady–state error gets smaller the larger the gain is. But a large gain often leads to an
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Figure 3.4: The 5 joints of the left leg of the NAO with their respective ranges and initial
positions, [21].

undesired transient behaviour such as oscillating or large peak overshoot, [18]. This can
be improved by adding integral feedback. Differential feedback on other hand can help to
reduce the settling time. A Proportional–Integral–Derivative (PID) ankle controller with
gyroscope feedback looks as follows:

θrFoot = θr0,Foot +Kr
P

(
ωrGyro +

1

T rI

∫ t

t0

ωrGyro dτ + T rD
dωrGyro

dt

)
. (3.5)

Hip Controller

A similar controller can be used to balance the NAO by adjusting the hip roll and pitch.
This approach has been used for the NAO by Müller et al., [8]. PID controller that adjust
given hip roll θr0,Hip with gyroscope feedback

θrHip = θr0,Hip +Kr
P

(
ωrGyro +

1

T rI

∫ t

t0

ωrGyro dτ + T rD
dωrGyro

dt

)
. (3.6)

Analogously, a controller for the hip pitch θpHip uses ωpGyro. Both the ankle and the hip
controller can be easily implemented on the NAO and either of them can contribute
to maintain balance during kicking. Before the kick is further examined, some general
concepts about the NAO, the existing software framework of the HULKs and related
topics are covered.
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4 NAO Robotic System Hardware and Software

This section introduces the NAO. Its hardware and parts of the HULKs’ software frame-
work that are relevant to the implementation are presented. Namely, kinematic matrices,
coordinate transformations and forward and inverse kinematics are explained since they
are frequently used in the final implementation. In addition to that, low–pass filtering of
sensor readings is outlined shortly.

4.1 NAO Robotic System

The NAO is developed by French company Aldebaran–Robotics. It has a height of 57.4 cm
and a weight of 5.4 kg; compared to other humanoid robots it is rather small. In 2008, it
has replaced Sony’s AIBO quadruped in the RoboCup SPL. Figure 4.1 shows two NAO
robots competing in a match of football, one of which is about to kick the ball. Overall,
the NAO was designed to provide a good performance and modularity while remaining
affordable. It has 25 DoF in total and, as opposed to most other humanoid robots,
it has hip joints with an inclination of 45◦ that make it’s pelvis more similar to that
of a human, [2]. Each joint has a coreless brushed DC motor that can be controlled
independently except for the hip yaw–pitch, [21]. The torque of each motor can be
limited by reducing the applied current to a percentage of its maximum value; this is
called stiffness. The newest version has a 1.6 GHz CPU, 1 GB RAM and 2 GB flash
memory. The NAO robotic system is designed to operate autonomously and can be
programmed in C++ and in Python.

To perceive its environment, the NAO is equipped with several sensors, including 4 Force
Sensitive Resistors (FSRs) underneath each foot, an IMU, composed of a gyroscope and an
accelerometer and Magnetic Rotary Encoders (MREs) to measure the joint positions, [21].
Furthermore, the NAO is able to interact with humans and its surroundings visually and
acoustically via video cameras, infra–red sensors, LEDs, loudspeakers and microphones.

4.2 Low–Pass Filter

To handle external disturbances while standing on one foot kicking, feedback control with
sensor data is vital. The sensor data are obtained from methods of class Blackboard,
which manages all sensor data of the NAO in the HULKs’ code base. Sensor readings
of any of the sensors mentioned in section 4.1 are noisy. Therefore, they are unfit to be
used directly for closed–loop control. If noisy signals were used to control the motors it
would cause vibrating. Since noise typically has a higher frequency than the measured
value, a low–pass filter can be applied to smooth the data. For this an exponential moving
average can be used, [8]. The filtered value x̃t for an arbitrary sensor at point in time t is
recursively calculated by

x̃t = αxt + (1− α) x̃t−1. (4.1)

The measured value xt at point in time t is multiplied by a constant weighting α with
α ∈ [0, 1]. It is then added to the previously filtered value x̃t−1, which is weighted by
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Figure 4.1: The blue NAO robot is about to kick the ball while the red one is approaching
it (http://www.ist.tugraz.at/staff/steinbauer/nao_game.jpg, 15.12.2016)

1 − α. Thus, the more recent a measured value is, the greater its impact on the filtered
value. This filter can be easily implemented and is computationally inexpensive, but
other low–pass filters could be used instead. Figure 4.2 showcases the influence of α for
gyroscope roll measurements for an excerpt of a kick motion. Without any filtering, i. e.
α = 1, the signal is noisy. For decreased values α the currently measured value is trusted
less. This causes the filtered signal to be smoothed; the hight–frequent noise is removed
and the amplitude is reduced. However, an increasing delay comes along with that.

When looking at the gyroscope readings an interesting phenomenon is noticed: The val-
ues seem to be updated every 20 ms. But the motion cycle —requested the measured
gyroscope values—has a frequency of 100 Hz. As to why this discrepancy exists is not
known, but it appears as if the gyroscope only had a sample rate of 50 Hz.

4.3 Kinematic Matrices and Coordinate Transformations

The support foot serves as a reference coordinate system during a kick (see section 3).
Positions and orientation defined with this coordinate system are absolute. Hence, the
kicking foot’s position should be calculated with DMPs relative to the support foot.
However, the joint angles are calculated via forward kinematics (see section 4.4) from the
kicking foot’s position relative to the torso. To obtain them, a coordinate transformation
is necessary. Another example for the necessity of coordinate transformations is the CoM
that is calculated from joint angles in torso coordinates but is more useful in absolute
coordinates for maintaining balance. This section briefly introduces concept of kinematic
matrices and coordinate transformations.
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Kinematic Matrices

A Kinematic matrix aT b that defines position and orientation of limb b in coordinates of
limb a is written as follows:

aT b =

[
aRb

apb
0 1

]
. (4.2)

In 4.2, aRb ∈ R3×3 is a rotation matrix, apb ∈ R3 is a position vector and aT b ∈ R4×4 is a
kinematic matrix. The 1 and 0 are added to make the dimensions compatible. Kinematic
matrices are represented as objects of class KinematicMatrix in the HULKs’ framework.
The nomenclature for them is b2a, meaning position and orientation of b relative to a is
described. Not only are kinematic matrices useful for combining position and orientation,
they also allow for straightforward coordinate transformations.

Coordinate Transformations

A coordinate transformation can easily be done by multiplying two kinematic matrices.
Let cT a denote position and orientation of a in reference coordinate system c and aT b

denote position and orientation of b in coordinates of a. To obtain cT b, one has to multiply
the given matrices:

cT b = cT a
aT b. (4.3)

With KinematicMatrix objects b2a and a2c, this transformation would be equivalent
to b2c = a2c · b2a in the HULKs’ software framework. For a kinematic chain—a series
of connected limbs—multiple transformations can be done by multiplying the respective
kinematic matrices with matching sub– and superscripts.
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4.4 Forward and Inverse Kinematics

The relationship between joint angles and kinematic matrices of a part of a mechanical
system is quite important. In the HULKs’ framework joint angles are represented by
vectors of type std::vector<float>. Depending on whether a set of joint angles or kinematic
matrix is given, the other one can be calculated accordingly by either forward or inverse
kinematics, [1]. Since these methods are vital to the implementation of a kick, they shall
briefly be explained here.

Forward Kinematics

Position and oriantation of a limb can be calculated from given joint angles by forward
kinematics. For example, this is required when one wants to calculate the CoM for a
given set of joint angles. In the HULKs’ framework kinematic matrices for each limb can
be calculated via forward kinematic by methods of class ForwardKinematics that have a
vector of joint angles as input.

Inverse Kinematics

Inverse Kinematics on the other hand refers to calculate joint angles for a desired posi-
tion and orientation of a limb. This can for example calculate the joint angles for a leg
that correspond to a certain foot position. There exist analytical and numerical methods
for this. The existing implementation for the NAO utilizes an analytical one. To cal-
culate joint angles from a given kinematic matrix in torso coordinates methods of class
InverseKinematics can be called. For the leg, there is a peculiarity since the NAO has
only one motor to control both left and right hip yaw pitch (see section 4.1). Therefore,
there are two methods for inverse kinematics for each leg, one that is called with a set
hip yaw pitch and one without it.
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5 Implementation

Prior to any implementation on the NAO, the DMPs’ approach to generate trajectories is
tested in MATLAB. Here, a kick is learned from a demonstrated kick motion. Different
modifications are tested and assessed. Afterwards, the implementation on the NAO is de-
scribed and important features are explained. This includes the implementation of DMPs
and controllers utilizing gyroscope feedback as well as a way to hold the CoM above the
support foot.

5.1 Dynamic Movement Primitives in MATLAB

To test DMPs, MATLAB scripts that implement the components are written. The solu-
tion of the canonical system (see section 2.8) and the basis functions (see section 2.10) is
calculated. For trajectory learning, τ is set to the duration of the demonstrated motion.
The time constant αx is calculated so that x(τ) = 10−3 and the constants K and D can
be set to arbitrary values so long as the system is still critically damped, [15]. The differ-
ential equation that is the transformation is solved by the Euler method. The weightings
wi are obtained from a demonstrated trajectory with locally weighted regression, [10].

5.1.1 Foot Trajectory from Interpolated Key–Frames

A kick motion is learned from the existing key frame based motion previously used by
the HULKs. To accomplish that a program that plays a MotionFile and interpolates
between the key frames is written. Motion files consists of vectors of joint angles with a
relative duration and a total duration. The elements of each vector correspond to joint
angles with numbers 0 to 25. Also, the stiffness of the joints is specified. For each point
in time the angles are interpolated linearly between the previous and next key frame.
The position vector for the kicking foot can be calculated from these angles with forward
kinematics. The calculated positions are relative to the torso. As explained in section 3
the end effector trajectory should be relative to the support foot coordinates; a coordinate
transformation is necessary. The transformed position vectors are written into a .txt file
for importing them to MATLAB.

With this trajectory weightings can be learned. However, the whole kick motion begins
and ends in the ready pose—where the NAO stands upright with bent knees—or close to
it. If one were to scale the final position or velocity, one would not be able to scale it to
meet requirements imposed on the kick since the point when foot and ball collide is not
controlled directly. For that reason, only the part of the motion where the foot is lifted
and swings forward is extracted. This allows a more usefully generalized kick. Sample
code that computes the trajectory for the left kick that has been used thus far is given in
appendix B.
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Figure 5.1: Position x (left) and velocity ẋ (right) for different target positions x(τ) (top)
and different durations τ (bottom). The transformation system has a fixed target g.

5.1.2 Transformation System and Modifications

In the following, the transformation systems as of 2.13, 2.14 and 2.19 are explored and their
usefulness for kicking is assessed; generalizability in terms of final end effector position
and velocity is tested. With a given trajectory as of section 5.1.1 the nonlinearity flearn
can be calculated; it has to match the transformation system though. The duration is
normalized to 1. The target position, target velocity and duration are changed and the
resulting x(t) and ẋ(t) are presented in figures 5.1 and 5.2. The position and velocity in
y–direction can be found in appendix C. The z–direction is omitted because it is the least
interesting for dynamic kicks.
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(a) Constant target position, changing velocity
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(c) Constant target position, changing velocity
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Figure 5.2: Position x (left) and velocity ẋ (right) for different target velocities ẋ(τ)
without forcing term amplitude A (top) and with A (bottom). The transformation system
has a moving target gp(t).

Modified Transformation System

At first, a transformation system as of equation 2.13 with constant targets is implemented.
The system still reaches the desired state while having a shape resembling the original
motion. Figure 5.1a and 5.1b show the behaviour under spatial scaling. As expected the
final velocity stays constant.

Temporal scaling can be used to influence the final velocity. Figure 5.1d shows this
correlation. Here, the duration τ is changed. Evidently, the relation between final velocity
ẋ(τ) and temporal scaling τ is ẋ(τ) ∝ 1

τ
. This means that if one wants to double the final

velocity, the duration is to be halved. The shape of x(t) stays the same; there is just a
dilation because of the changed duration (see figure 5.1c).
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Moving Target without Amplitude

Secondly, the transformation system with equation 2.14 is tested. Spatial scaling of x
works in the same way as in the previous section and is therefore not illustrated here. It
has direct control over the velocity ẋ(τ) at the end of the kicking motion. In figures 5.2a
and 5.2c the position and velocity in x–direction for varying moving target velocities are
shown. The desired final state is reached but apparently the shape of the trajectory
deviates from the original one. Depending on the magnitude of the deviation this could
be problematic; limited joint angles might not allow to follow the trajectory or limbs
could collide. This shortcoming can be addressed by multiplying the nonlinearity by an
amplitude that takes into account the desired and the original velocity.

Moving Target with Amplitude

With the forcing term amplitude of 2.18 in transformation system 2.19, the trajectory
can maintain its original shape in the face of changing velocities. Figures 5.2b and 5.2d
illustrate this. However, the trajectory still differs from the original one.

5.1.3 Assessment of the Different Transformation Systems

Transformation system 2.14 is clearly superior to 2.19 since the amplitude reduced the
divergence from the original trajectory. When it comes to assessing the one with fixed
target, the answer is not so obvious.

From figures 5.1 and 5.2 it can be concluded that the requirements of adapting to ball
positions (1) and changing the kick strength (3) can both be fulfilled by both transfor-
mation systems. A dynamic kick should also be able to kick the ball in any direction as
defined in requirement 2. The collision of ball and foot can be thought of as a collision of
two spheres. [6]. When the foot kicks the ball, the tangent of its contour determines the
direction of the kick. As can be seen in figure 5.3, any spatial scaling applied still results
in a trajectory that resembles a forward kick. To kick a ball in a specified direction,
the foot has to move in this direction when it hits the ball. This can not be done with
the original DMPs formulation. A moving target as explained in section 2.3.2 is able to
accomplish this by changing the velocities of the kick independently for each dimension.
However, ẏ1 in equation 2.15—for the transformation system for the y–direction—has
to ba scaled with a large factor to have a significant impact on the kick direction since
it is far smaller than ẏ1. This causes large deformations of the trajectory even when a
forcing term amplitude is used. Figure 5.4 showcases this problem. It is nontrivial to
say whether a trajectory is still feasible with changed final velocities. Because of this,
an omnidirectional kick is is not directly realizable with any of the DMP formulations
mentioned.

Both equation 2.13 and 2.19 match some requirements of a dynamic kick by allowing
to set final position and velocity and thereby kick a ball from any position with desired
velocity. But neither is able to feasibly control the direction of the kick. Therefore, the
simpler formulation as of equation 2.13 is chosen for the implementation on the NAO.
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Figure 5.3: With DMPs the kick motion can be adapted to different ball positions. The
motions bends naturally to adjust the reach back motion for different ball positions.
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Figure 5.4: The ability to scale the final velocity of x and y independently different kick
angles can be achieved. However, the motions bends and can become inexecutable.

5.2 Implementation on the NAO Robotic System

With the results from the previous section 5.1.3, a dynamic kick is implemented on
the NAO in C++. It kick is implemented as the Kick module in the HULKs’ module
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architecture. Each module has a cycle that is executed periodically, [22]. The motion
modules all have a frequency of 100 Hz and thus, the cycle time is 10 ms. During each
cycle, the kick module checks for a MotionRequest. A MotionRequest describes the
desired properties of the kick that is to be executed. If a MotionRequest is sent from the
Brain module, a kick motion starts. At this point a decision regarding which type of kick
to execute is made depending on ball position and desired direction and strength of the
kick. The parameters that generalize the kick motion are set to match the demands of
the MotionRequest. One of the feet is assigned the role of the kicking foot, the other one
will be the support foot. This decision is based on the ball position relative to the torso.
The weightings for the left and right that were calculated in MATLAB (see section 5.1.1)
are stored in a json file. The same is true for the duration and final velocity of the
demonstrated trajectory. They are required to calculate the scaling parameters.

If a kick has been initialized, the next kicking foot position is calculated during each
cycle. Then, the joint angles are calculated with methods of the InverseKinematics

module. They are adjusted so that the CoM is at a desired position and a control signal
is applied to either the ankle or the hip joints of the support foot. The learned motion
described in section 5.1.1 does not return the initial position. Thus, motion phases are
formed around the motion generates from DMPs.

5.2.1 Kick Motion Phases

The kick is divided into motion phases based on similar to [8]. In each phase, a part of
the kick is executed while a controller aims to maintain balance. There are six phases in
total. This allows precise adjustments to the individual phases.

1. Attain Balanced Pose
The torso is shifted so that the CoM ground projection is at a specified point within
the support foot’s sole.

2. Lift Kicking Foot
The single–support phase is commenced by lifting the kicking foot.

3. Swing Leg to Kick
The actual kick motion that strikes the ball. The final position and velocity of this
phase are those that are adapted to different situations.

4. Retract Kicking Leg
The leg that kicked is retracted. This compensates the angular momentum that
results from swinging the leg to some extent.

5. Extend Kicking Foot
The foot is extended to establish double support again.

6. Center CoM
The torso is shifted back so that the CoM ground projection is between the two
feet. After this, the NAO is back in its initial pose again.
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Phase 2 and 3 are covered by DMPs and are only mentioned to conceptually separate
the lifting and swinging. For the CoM shifts 1 and 6 the position relative to the support
foot is interpolated for a given duration and joint angles are calculatped with inverse
kinematics (see section 4.4). The leg retracting 4 and extending motion 5 is generated
from interpolating joint angles that specify desired poses. The first four phases happen
sequentially. It has turned out to be successful to shift the CoM back while simultaneously
extending the leg.

With the results from the previous assessment (see section 5.1.3), a dynamic kick is im-
plemented on the NAO. The DMPs framework with a transformation system 2.13 is
implemented in a method of class Kick. When called, it calculates the kicking foot’s posi-
tion for the current cycle and updates the KinematicMatrix kicking2support from the
calculated position of the foot. It used a transformation system with a vector representing
the three spatial dimensions. For vector and matrix operations the C++ library “Eigen”
is used. The orientation is set to an identity matrix which means the “toes” face forwards.
As explained in section 4.3 the trajectory is calculated relative to the support foot but
to calculate the joint angles for the current cycle they need to be relative to the torso.
The required coordinate transformation is done by multiplying two KinematicMatrix, i.
e. kicking2torso = support2torso · kicking2support.

For the interpolation, an Interpolator class is used. An object of that class is con-
structed with an initial vector, a final vector and a duration. A method step calculates
intermediate values in each cycle, hence creating a motion in a manner very much re-
sembling key frames (see section 2.1). The Interpolator class can also interpolate the
position of the CoM. This is used for the CoM shift of phases 1 and 6.

As the robot shifts the CoM, the torso has a certain velocity and therefore a momentum.
When the motion stops abruptly, this momentum can cause the NAO to tip over, espe-
cially since the support foot is rather small along the y–axis. To reduce the risk of tipping
over the step method of the Interpolator is called with a time step with varying size.
Depending on the progress t

T
, where t is the current time and T is the duration of the

phase, the time step is adjusted. A sinusoidal time step dtadjusted = 1 + cos(π t
T

) accom-
plished this and makes sure that the size of the time step is smaller as the motion nears its
end.The same adjustment is done to the interpolation in phase 5, where the kicking leg is
extended again. If the leg is extended at constant speed, the collision upon touching the
ground can severely impair the ability to balance. Therefore, the size of the time step is
decreased as the foot nears the ground. This way the speed diminishes as the foot draws
near the ground and contact is made more smoothly.

5.2.2 Balance Center of Mass

With the kick motion settled, a way to maintain balance is implemented. As a first
measure to maintain balance while kicking the torso is shifted during phase 1 so that
the CoM is above the support foot. During the rest of the kick the CoM is held at this
position until finally being moved back to the initial position in phase 6. The CoM is
calculated from the current joint angles as measured by the MREs and masses of all
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limbs. Since the CoM is calculated relative to the torso but required to be relative to the
ankle of the support foot, a coordinate transformation is required. The transformation
matrix is acquired from angle measurements of the IMU, which describe the inclination
of the NAO. The measured roll and pitch of the torso are used to project the CoM to the
xy–plane that is the ground. Alternatively, the transformation matrix could be obtained
from the current joint angles, but they do not take the torso inclination into account, [17].
The IMU angle data are low–pass filtered as described in section 4.2 with α = 0.2.

During the kick, the CoM changes because the kicking leg is moving. To keep the CoM
above the support foot, the angles of the support leg are recalculated. The kinematic
matrix kicking2support has to stay the same in order to properly kick the ball. A method
balanceCoM is implemented to do this. It iteratively calculates joint angles for both legs
that result in the CoM being at a desired position. The error of the desired and current
com2support position is used to adjust the torso position, [8]. With the CoM projection
lying within the support polygon, static balance is established (see section 3.1).

5.2.3 Gyroscope Feedback Control

Holding the CoM projection within the support polygon can balance the NAO if it is
almost standing still. This is not the case during kicking. Therefore, a means to establish
dynamic balance (see section 3.2) has to be implemented.

The ankle controller is implemented as a method of the Kick class. In each cycle, after all
joint angles are calculated and then corrected by the balanceCoM class explained in 5.2.2,
a P–controller as of equation 3.4 is implemented to adjust the ankle roll and pitch. The
gyroscope readings are low–pass filtered (see section 4.2) to deal with noisiness.

The gains for the controller have to be determined. To do this, the Ziegler–Nichols method
is applied. For the Ziegler–Nichols method, the proportional gain KP of a closed–loop
system without integral or derivative feedback is gradually increased until the system
becomes unstable. At this point there will be an oscillation. The critical period Pcr is
measured and the critical gain Kcr at which this oscillation occurs is noted. The gains
are then calculated from the following table, [18].

KP TI TD
P 0.5 ·Kcr ∞ 0

PID 0.6 ·Kcr 0.5 · Pcr 0.125 · Pcr

For the ankle roll controller the critical gain is Kcr = 0.23 and the critical period is
Pcr = 7.8 ms. The gains for P– and PID controller are calculated according to table 5.2.3.
To address integrator wind up the control signal is limited to a set interval. The pitch
controller is equivalent to the one currently used in the HULKs’ walking engine and the
proportional gain is set to the same value.

The hip controller that was described in section 3.3.2 can be implemented in a similar
fashion. However, it was found that using the hip joints to maintain balance often causes
the legs to collide while kicking. Because of this, the idea of adjusting hip roll and pitch
joints to maintain balance is discarded.
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6 Evaluation

The implemented kick is evaluated with respect to generalizability and stability. Different
ball positions relative to the support foot are tested. Also, the distance the ball covers is
measured for different parameters and the stability during the kick is evaluated. Because
the NAO is (almost) symmetrical in its joints and links, measurements are only taken for
the left foot.

6.1 Kick Strength and Temporal Scaling

At first, the scalability of the kick strength is tested (see requirement 3). The distance
covered by the ball can be controlled indirectly by increasing or decreasing the duration,
which in turn leads to a decreased or increased velocity of the foot. The simulations in
MATLAB (see 5.1.2) suggested that the correlation between final foot velocity ẋ(τ) and
duration τ is ẋ(τ) ∝ 1

τ
. With this in mind, kicks are executed with different durations

and the distance covered is measured. The mean value and standard deviation for the
distance covered in x– and y–direction are calculated. The measurements for 10 kicks
for each chosen duration τ is portrayed in figure 6.1, whereby τ is changed in steps
of 50 ms between 150 ms and 500 ms. It can be seen that the distance covered does indeed
correlate with the duration, although the distance covered in not necessarily inversely
proportional to τ . For τ = 150 ms the distance covered is smaller than the distance
covered for τ = 200 ms. At this point, the motion becomes too fast for the motors the
execute it. Therefore, the minimum duration is set to 200 ms. The maximum duration is
set to 500 ms because at that point the mean distance covered is only about 70 cm and at
that point, dribbling is more desirable than kicking.

In an idealized case there is no distance covered perpendicular to the kick direction. But a
real kick will have such a deviation from the desired behaviour. To measure the accuracy,
the error of distance the ball covered in y–direction is measured, where y is the axis
perpendicular to the kick direction x. The mean and standard deviation of the angle α
that results from this deviation is calculated.

The empirical relationship between distance covered in centimetres for 200 ms ≤ τ ≤
500 ms is approximated by x = 0.0015τ 2 − 1.6467τ + 510. One can observe that the
standard deviation increases the greater the distance covered is.

The angle deviation is depicted in figure 6.2. An angle of α = 0 indicates a kick in
x–direction. The mean angle is close to zero, but the standard deviation is high. Unex-
pectedly, the angle deviation does not decrease for shorter distances covered.

Both the error of the distance covered and the kick angle can be the result of the ball
being kicked at different segments of the trajectory. Also, the quality of the kick depends
strongly on the exact ball position.

The exact interaction with the ball as well as friction the ball experiences as it rolls on
the artificial turf are unknown. But with the empirical relationship, a MotionRequest

sent by the Brain can be properly executed by translating the specified desired distance
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covered to a necessary duration. Albeit both the covered distance and angular deviation
are high, this makes it possible to pass the ball to a team member if that robot’s position
is known and within reach.

6.2 Ball Position and Spatial Scaling

With the DMP framework, the kick should be able to kick the ball from different positions
and thus meet requirement 1. The generalized trajectories for different end effector posi-
tions are depicted in figure 5.3. To test this for the robot, the ball is put in front of one
foot with an offset in x– and/or y–direction. The distance from the center of the ball to
the ankle is measured by hand. Then, the parameters that determine the final end effector
position are set so that its trajectory should traverse the ball. A straight forward kick
is performed and the process is repeated multiple times for different ball positions. The
results for 4 different yBall positions relative to the support foot are depicted in figures 6.3
and 6.4. The mean distance covered is approximately the same for ball positions ranging
between 60 cm and 150 cm. The same holds for the kick angle α. For yBall = 200 cm the
distance covered decreases drastically. This can be explained with the limited range of
the joints.

There are physical limitations to the generalizability of the kick. The joints operate in
a limited range and the dimensions of limbs are constant. Thus, only a confined area is
reachable by the foot; it is called the end effector workspace, [23]. The workspace boundary
is denoted work envelope. This limits the spatial scaling capabilities of the DMPs. Upper
and lower bounds for the parameters that control the trajectory are introduced to avoid
this. With the simplifying assumption made in section 5.1.3, the foot is assumed to kick
the ball with the center of the tip of the foot if the motion is scaled correctly. The scaling
parameters that specify the ankle position of the kicking foot are only compatible with
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the ball position given by MotionRequest if the relevant foot length—the distance from
its toe to its ankle—is subtracted from the ball position.

To estimate the work envelope, a MATLAB script is written. It calculates the end effector
position in the workspace through nested for–loops. Each loop increments a joint angle
of the kicking leg. For each combination of angles, the position is calculated by forward
kinematics (see section 4.4). To avoid dependency on too many joint angles, the workspace
of the kicking foot is calculated relative to the torso and not the support foot. It is assumed
that the boundaries derived are still applicable since the CoM—which is held above the
support foot—most of the time lies within the torso since it has a relatively high mass
and the limbs are symmetrical. The official ball used in the SPL of the RoboCup 2017
has a diameter of 100 mm, [3]. The effect of striking the ball at different heights is not
investigated here. With this in mind, the workspace at a height about 35 mm to 45 mm
is used to estimate boundaries for spatial scaling in the transversal plane. The actual
kicking height is set to 40 mm. The points of the end effector form a three–dimensional
scatter plot, but only the x–y–plane is taken into account here. Figure 6.5 displays the
workspace of the left foot with at the defined height.

Figure 5.1a suggests that the when kicking the foot swings forward for about 150 cm
regardless of the spatial scaling. If this swing distance is reduced by the limited workspace
of the foot, the kick strength is impaired. This explains the reduced kick strength observed
for the outermost ball position. With the workspace calculation, limits that determine
minimum and maximum spatial scaling are set. They are set as absolute values of positions
of the ankle relative to the support foot. For the left foot, these boundaries can be seen in
figure 6.5. The frontal limit is approximated by a quadratic function. To retain the full
kick strength, the limit for the maximum yBall position is set accordingly. The boundaries
for the right foot are obtained by mirroring the boundaries for the left foot.
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Figure 6.5: The workspace of the left foot to estimate reachable space.

6.3 Balance While Kicking

The balance during kicking is assessed by performing kick with varying temporal and
spatial scaling. During previous tests it was observed that the saggital plane is almost
never an issue, whereas balance in the coronal plane is harder to maintain. This is due
to the dimensions of the feet. The length in x–direction of about 15 cm far exceeds the
width in y–direction of about 7 cm and therefore the NAO is more likely to tip over about
the x–axis.

While testing the implemented kick, it has been observed that the NAO is seemingly not
symmetrical, for maintain balance during right kicks appears to be more difficult than
during left kicks. When right kicking, the NAO would frequently fall over to the left.
If one consults the manufacturer’s documentation, one finds out that the joint ranges
of the left and right leg are slightly different. This can potentially explain the observed
discrepancy. To cope with this, the desired CoM that is held during the right kick (see
section 5.2.2) is adjusted manually.

The implemented PID–controller was tuned in compliance with the Ziegler–Nichols method.
However, the PID-controller produces large overshoot and is often in saturation. On the
other hand, the P–controller tuned with the Ziegler–Nichols method provides more promis-
ing results. This might indicate that the critical period is erroneous. In the remainder of
this section, only the P–controller is tested.

For each foot, 50 kicks are performed. The location of the NAO on the pitch is changed
to compensate variances of the artificial turf. With the adjusted desired CoM position for
the right kick as it was described above, the NAO did tip over 7 times across the 50 kicks.
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Figure 6.6: Roll, Pitch and Yaw during a Kick

The results for left kicks is even better with the NAO only tipping over 5 times out of 50.
It occurred not once that the balance is the sagittal plane could not be maintained. For
reasons states above, the coronal plane is more problematic.

Figures 6.6a and 6.6b show the roll and pitch of the NAO’s torso during a kick. It can
be observed that as the actual kick motion (see section 5.2.1, phase 3) happens at about
1000 ms, there is a sudden change of the pitch. This is caused by the moment induced
from the rapid foot motion. The robot swings after kicking. This is partially due to the
backlash of the joints. The change from the initial pitch of −3◦ to 5◦ can be explained by
the fact that the CoM is not only shifted in x– but also in y–direction. In the ready pose,
the NAO is inclined slightly backwards and leans forward a bit when initializing a kick so
that the ground projection of the CoM lies closer to the center of the support polygon.
The P–controller is able to ensure that both the roll and pitch return to their original
value.

In section 3, it was assumed that the NAO does not rotate about the z–axis. This is
confirmed for the implemented kick. Figure 6.6c shows the yaw angle while kicking.
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Although there is a divergence between the initial and final yaw angle, the magnitude
small enough to be neglectable.
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7 Conclusion and Outlook

This thesis examined the applicability of DMPs for kicking motions on the NAO. A
kick motion was learned and could be generalized to new situations. Thus, much time
is saved because careful positioning—as it was required with the previous kick based on
key frames—is no longer necessary. The NAO is also able to engage in team behaviour
because the controllable kick strength makes passing the ball to team members possible.
A kick motion generated from DMPs could also be incorporated into the walking engine
of the HULKs’ framework for flexible in walk kicks.

The deviation of the distance covered in kick direction and the spurious distance covered
in the direction perpendicular to the desired one is rather large. Among other factors, it
is caused by irregularities of the artificial turf and of the ball. Even with a model for the
rolling friction and other properties, the variance is hard to reduce.

As of now, the generalizability of the kick direction is not possible. This can be done by
using a Mixture of Motor Primitive (MoMP) as it was proposed by Mülling et al., [4]. The
MoMPs consists of a weighted sum of MPs such as DMPs. Due to this fact, a forward kick
combined with a side kick could control the direction of the kick by adjusting their weight.
A new kick motion can be incorporated easily simply by deploying new weightings.

The trajectory that was learned was used mainly because it was available. The kick can be
further improved by optimizing the demonstrated trajectory with learning algorithms, [5].

During testing the NAO could maintain balance most of the time with a simple P–
controller. Using the Ziegler–Nichols method for tuning the ankle controller did not
function successfully. The PID–controller could be improved by optimizing the gains
with the help of learning algorithms, [19].

To further improve the ability to not tip over while executing a kick, a ZMP preview con-
troller can be implemented. It generates a trajectory for the CoM so that the current and
future ZMPs are within the support polygon. ZMP preview control has been successfully
implemented by other RoboCup SPL teams, [15].

The computational time is within the limits imposed by the NAO. However, the kick is not
implemented in an optimal way and the required time during each cycle can potentially
be reduced.
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A Symbolic Solution for Coefficients

This MATLAB script symbolically solves the system of equations with initial and final
position, velocity and acceleration of the moving target introduced in 2.3.2 for the coeffi-
cients b0, ..., b5.

1 % symbolic variables
2 syms b0 b1 b2 b3 b4 b5 y0 y0d y0dd y1 y1d y1dd tau;
3

4 % system of equations
5 eq1 = y0 == b0;
6 eq2 = y0d == b1;
7 eq3 = y0dd == 2∗b2;
8 eq4 = y1 == b5∗tauˆ5 + b4∗tauˆ4 + b3∗tauˆ3 + b2∗tauˆ2 + b1∗tau + b0;
9 eq5 = y1d == 5∗b5∗tauˆ4 + 4∗b4∗tauˆ3 + 3∗b3∗tauˆ2 + 2∗b2∗tau + b1;

10 eq6 = y1dd == 20∗b5∗tauˆ3 + 12∗b4∗tauˆ2 + 6∗b3∗tau + 2∗b2;
11

12 % solve for coefficients; display in command window
13 coefficients = solve(eq1, eq2, eq3, eq4, eq5, eq6, b0, b1, b2, b3, b4, b5);
14 [coef.b0; coef.b1; coef.b2; coef.b3; coef.b4; coef.b5]

B Foot Trajectory from Key Frames

The following C++ code calculates the trajectory for the kicking foot from a given motion
file. It is implemented for the left foot only but can easily be adapted for the right.

1 #include <iostream>
2 #include <fstream>
3 #include ”MotionFile.hpp”
4 #include ”ForwardKinematics.h”
5 #include ”NaoProvider.h”
6

7 int main() {
8 // load and play motion file; open file for output
9 mFile::MotionFile LKickFile;

10 LKickFile.loadFromFile(”kick L.motion2”);
11 LKickFile.play();
12 std::ofstream LFile;
13 LFile.open(”kick L trajectory.txt”);
14 // for the duration of the motion get angles for each cycle
15 while(LKickFile.isPlaying()){
16 mFile::JointValues values = LKickFile.cycle();
17 std::vector<float> kickingAngles(JOINTS L LEG::L LEG MAX);
18 std::vector<float> supportAngles(JOINTS R LEG::R LEG MAX);
19 // leg angles from whole body angles
20 for(int i = 0; i < kickingAngles.size(); i++){
21 kickingAngles[i] = values.angles[JOINTS::L HIP YAW PITCH+i];
22 supportAngles[i] = values.angles[JOINTS::R HIP YAW PITCH+i];
23 }
24 // kinematic matrices and coordinate transformation
25 KinematicMatrix kickingFoot2Torso = ForwardKinematics::getLFoot(kickingAngles);
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26 KinematicMatrix supportFoot2Torso = ForwardKinematics::getRFoot(supportAngles);
27 KinematicMatrix kickingFoot2supportFoot = supportFoot2Torso.invert() ∗ kickingFoot2Torso;
28 Vector3<float> LKickPosition = kickingFoot2supportFoot.posV;
29 LFile << LKickPosition.toString();
30 }
31 LFile.close();
32 }

C Supplementary Figures Illustrating Generalizabil-

ity for the Learned Motion

Figures C.1 and C.2 show the position and velocity of the left foot for kicks with vary-
ing durations and velocities. Figure C.1 uses the modified transformation system (see
equation 2.13) while figure C.2 uses the one with a moving target without and with an
amplitude for the nonlinearity (see equations 2.14 and 2.19).
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Figure C.1: Position y (left) and velocity ẏ (right) for different target positions y(τ) (top)
and different durations τ (bottom). The transformation system has a fixed target g.
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Figure C.2: Position y (left) and velocity ẏ (right) for different target velocities ẏ(τ)
without forcing term amplitude A (top) and with A (bottom). The transformation system
has a moving target gp(t).
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D Content of the CD

1. This thesis in a digital format

2. MATLAB code for Dynamic Movement Primitives with the learned trajectory and
foot workspace calculation

3. The source code of the implemented kick on the NAO
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